
Exercises
November 2008
Online Software
Training
Version 4.0

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the Information
and Programming Techniques Group at CERN. Only widely available fonts have been used, with
the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the rights of the
trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of this
documentation and associated computer program reserved in all countries of the world.

Organisations collaborating with CERN may receive this program and documentation freely and
without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility for its
correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which they are
distributed.

This program may not be copied or otherwise distributed without permission. This message must
be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

OUTLINE

Introduction . 7
Controller . 13
GUI panel .27
Diagnostics Test . 35
Event Monitoring .41
Online Histogramming . 49
Resource Manager .59

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the Information
and Programming Techniques Group at CERN. Only widely available fonts have been used, with
the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the rights of the
trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of this
documentation and associated computer program reserved in all countries of the world.

Organisations collaborating with CERN may receive this program and documentation freely and
without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility for its
correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which they are
distributed.

This program may not be copied or otherwise distributed without permission. This message must
be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

Chapter 1
Introduction

What is this
document about?

This document presents a series of practical programming exercises intended for people wanting
to develop detector or system specific software using the ATLAS Online Software as a
framework. It does not provide user training on how to run the ATLAS Trigger-DAQ system.

What is the
Online Software?

The Online Software is responsible for the overall experiment control, including run control,
configuration of the Trigger-DAQ system and management of data taking partitions. The Online
Software also includes the online monitoring infrastructure and graphical user interfaces used for
control and configuration, and the means for handling distributed information management
including database management and tools. It does not contain any elements that are detector
specific as it is to be used by all possible configurations of the DAQ and detector
instrumentation.

This chapter gives a general overview of the ATLAS Online software training exercises.

In these exercises you will be shown how to develop detector or system specific software using
the Online Software as a framework. Eight small exercises, described below, are to be made. In
the first exercise, you will develop a read-out driver crate (ROD) controller. For the second
exercise, you will develop a graphical panel capable of visualising information provided by the
crate controller. In the third one you will develop a test for the configuration previously built.
Afterwards you will develop an event sampler example and a monitoring task example using the
On-Line Monitoring package. In order to follow these exercises you need to have a basic
knowledge of the following subjects:

• unix environment (Bash shell, X Window System)

• basic object oriented concepts (object, method, attribute)

• C++ (basic syntax and constructs)

• programming tools (editor and make)

This tutorial assumes you are going to perform the exercises on a linux platform using the bash
shell.

Crate controller This part of the exercises explains how to develop a controlled application and a simplified
controller in C++ based on the Run Control component. You will learn how a controller operates
according to the standardized finite-state-machine and how to control an application.

GUI panel This part of the exercises shows you how to develop a simple panel in Java to visualize and track
the value of a parameter of a module in the ROD crate. The panel will be integrated with the
standard Online Integrated GUI.
Online Software Tutorial 7

Introduction
Event Monitoring This part of the exercises shows you how to develop an event sampler in C++ and a monitoring
task in java. This is useful to anyone going to implement an event sampler application that is
responsible for supplying events to the event distribution sub-system or to develop a monitoring
task that reads events from the event distribution.

Online
Histogramming

This part of the exercise explains how to use the Online Histogramming subsystem. You will
learn how to write a histogram provider and a histogram display using C++.

Test development
and diagnostics

This part of the exercises demonstrates how to write a test for the VME module in a crate and
integrate it so it can be used by the online diagnostics component.

Resource
Manager

This part of the exercises is dedicated to the usage of the Resource Manager, explaining how to
ask for resources, use resources and free them, using the Resources Manager library.

Installation of
Online SW

release

This document refers to the training prepared for tdaq-02-00-00 release of the TDAQ Software.
To use training, you have to have TDAQ Software release installed and configured. Release
tdaq-02-00-00 is available for the following platform/compiler combinations:

• Linux SLC4 / gcc-3.4

For the use of the Online Software and its training, it is recommended that you use bash shell.
However it is also possible to use the [t]csh. In the following document it is assumed that the
bash shell is used. Start the bash shell.

> bash

Software is available for download from
http://atlas-onlsw.web.cern.ch/Atlas-onlsw/download/download_page.htm. When using a local
installation of the release, source the generated setup.sh script in the directory where the Online
Software has beed installed to set up the environment:

> source ./setup.sh

If you have access to afs, you can use public installation of the release from
/afs/cern.ch/atlas/project/tdaq/cmt. To set up the release, you have to source the official setup
script having as agrument the release name. For example, to setup release tdaq-02-00-00 use:

> source /afs/cern.ch/atlas/project/tdaq/cmt/bin/cmtsetup.[c]sh
tdaq-02-00-00

When using the Online SW, in order to be a bit more independent of others using the same
distribution (your local install, or the public AFS version), it is possible to make your own
TDAQ IPC Reference File (see the Online Software FAQ on the Online Software web site for an
explanation of what an IPC Reference file is). To do this, setup the evironment as described
above and run the following command:

> export
TDAQ_IPC_INIT_REF="file:/new/path/that/you/choose/ipc_root.ref"

> ipc_server &

You can then always use your ipc_root_ref file just by setting the environment variable
TDAQ_IPC_INIT_REF to its location.

In order to run the exercises, you should be able to login to the PC on which you are running the
training via "ssh" without the need to type in a password or to confirm anything.

Installation of
Training package

The training package can be copied from the installed Online software release,
${TDAQ_INST_PATH}/share/data/training directory.
8 Online Software Tutorial

Introduction
To install the training exercises using an installed Online software release just copy the
training directory (with all the subdirectories and files) into a directory of your choice. For
example, to copy the training exercises from the release of the Online software available via AFS
use the following command:

> cp -r ${TDAQ_INST_PATH}/share/data/training .

Training
Documentation

 The training documentation can be found in the training_doc.pdf file in the
${TDAQ_INST_PATH}/share/doc/training directory of the installed Online software
release.

Source Code The directory tree containing source code of the skeletons and templates used for the exercises is
structured as follows:

training/

 controller/ # crate controller exercise

 ControlledApplication/ # controlled application exercise

 panel/ # GUI panel exercise

 diagnostics/ # diagnostic test exercise

 databases/ # holds partition database file

 monitoring/ # monitoring test exercise

 histogramming/ # histogramming test exercise

 resources/ # resource manager test exercise

 rcd/ # ROD Crate DAQ test exercise

 scripts/ # used by crate controller exercise

The training directory is the root directory of the training exercises and the path of this
directory is referred to by the environment variable MY_PATH. When you have copied the
training exercises, source the configuration script:

> cd training

> source ./.training.sh

This script sets all the environment needed to build the training code against the release on your
platform and also sets the environment variable MY_PATH which is referred to in this tutorial.
Note for it to be set properly you must be in the training directory when you source the
.training.sh setup script.

Solutions The completed working solutions for each of the exercises are available in the solution
directory below each exercise directory:

${MY_PATH}/

 controller/solution

 ControlledApplication/solution

 ControlledApplication/databases/solution

 panel/solution

 panel/databases/solution

 diagnostics/solution

 monitoring/cpp/solution
Online Software Tutorial 9

Introduction
 monitoring/databases/solution

 monitoring/java/solution

 histogramming/raw_provider/solution

 histogramming/root_display/solution

 resources/solution/databases

 rcd/solution/schema/

 rcd/solution/databases/

Example
configuration

To perform the exercises, an example configuration has been defined (Illustration 1.0). This
configuration is a simple partition that can be simulated on the computer being used for the
tutorial. The partition represents a detector made of a single Read-OutCrate crate. The crate
contains a single module. The module has one important parameter associated with it - a counter
that will be the primary interest of the exercise.

A partition of this format has been defined in a database and is available for use in the exercises.
The database files that contain the definition of the partition are held in the databases
directory:

${MY_PATH}/databases/partition_name.data.xml

${MY_PATH}/databases/partition_name.hw.data.xml

${MY_PATH}/databases/partition_name.sw.data.xml

Where partition_name is train_01.

The information is split accross the three files according to the following schema (see the
"Configuration Database User’s Guide" for more information):

• software database: software objects, resources, programs, environment and parameters;

• hardware database: computers, detectors, crates, module,

• main database: configuration including used schema and data files, partition,
applications (including run control and sampling applications), event sampling criteria,
environment and parameters.

Setting up the
example

database

The example databases need to be modified according to your local installation. It is necessary to
ensure that the host on which you will run the training exercises is defined inside the database.
Workstations (or PCs) are defined in a hardware repository included datafile. First you have to
check that your computer is already defined in one of the included databases. In case it is not
defined, you have to add a Computer object to the train_01.hw.data.xml file,
which is in the databases subdirectory. Check that the HW_Tag and RLogin attributes of this
computer are also correct for your local machine (default values for these attributes as
’i686-slc4’ and ’ssh’ must be OK for the most of Linux boxes).

To edit the configuration database you can either use your favorite editor and modify the XML
file directly (be sure to make a copy of the file first!) or use the graphical database editor
oks_data_editor utility. Open the main partition file with the command line:
10 Online Software Tutorial

Introduction
 > oks_data_editor $TDAQ_DB_DATA.

The TDAQ_DB_DATA environment variable should be set already by the .training.sh script. If
you are in the databases directory then the command is simply:

> oks_data_editor train_01.data.xml

When the database files are loaded into the oks_data_editor, there may be warnings
appearing in the status window. This happens because the database editor, after loading each
database file, reports any objects which are referenced but not yet found. Still can be a warning
message about a referenced missing script, but this should not appear when you include some
other database file, in the next chapter. Set the write permissions for databases if you need it,
using the chmod command:

> chmod u+w database_file

To check your computer is defined in the databases, push the right mouse button on the
Computer class, select Show and a window containing the computers will appear. Check your
compuer is defined already in the database.

 In case your computer is not defined in the database, you have to add an object of the Computer
class in the train_01.hw.data.xml database file. To edit the workstation object in this
database file push the right mouse button on this file in the window where the included files
(named Data Files) are and choose Set Active option. Double click the left mouse button on the
Computer class, select an already defined computer object, show this object, select this object by
clicking the right mouse button on the left up button of the object window and chose Copy
option. Fill in the name of your computer in the window asking this information and your own
computer object will show up. Check and fill in the other attributes of this object.To change the
"HW_Tag" attribute, left click on the current value and select the value for your workstation’s
tag.

Illustration 1.0 Example partition
Online Software Tutorial 11

Introduction
Go back to the window entitled "OKS Data Editor",which shows the loaded files. There select
the database train_01.hw.data.xml file, click the right mouse button and select Save.

In the "OKS Data Editor" select "Variable" class, click the right mouse button and select "Show".
In the "Oks Class : Variable" window select MY_PATH and show this variable (clicking the right
mouse button). Insert the "Value" for this variable (click with right mouse on Value field and
select "Set Value"). Set also the appropriate value for the variable DISPLAY (for slc4 this should
be set to ":0.0"). Go back again to "OKS Data Editor", select the database train_01.data.xml file
and Save it.

In case you are working on your slc4 local computer, you don’t have to perform any other changes in the
database at this moment. Exit from the database editor saving the changes you just made.

In case you use a ssh connection from your slc4 local computer on an other slc4 remote computer on which
you will perform the exercises, you have to perform more changes in the database:

• You have to be defined in the database both (remote and local) computers. The existing computer in the
database should be your remote computer, as described before. Use the oks_data_editor to set or to
create the second object of the Computer class. To do this, proceed as before to show the existing object
of the Computer class. When the object shows up, right click on the left up icon and select copy this
object. A window will apear asking for the name of the new Computer object, fill in this name with the
name of your local computer and verify the attributes for this new computer are ok in the database.

• Besides, you have to run the RODCrate1 Segment object of the train_01 partition on your local computer.
To do this, proceed as before to show the local computer object, right click on the left up icon and choose
this time the Select option for this object. Select in the window of the Classes show option for the
RODCrate1 object of the RunControlApplication class. When the object shows up, right click in the
window of the relationship RunsOn of this object and select the option to set this relationship to your
local computer object. Defining this relationship for the RODCrate1 RunControlApplication object, all the
segment controlled by this application will run on your local computer. In the same way, in the database,
you have to set your local computer in the relationship CPUs for the CounterModule object of the class
Module. Exit from the database editor saving the changes you made.

More examples
and

documentation

You can see more example applications that use the Online software here:

> $TDAQ_INST_PATH/share/examples

To see further details of the APIs used in these exercises you can look at the user manuals for each
component that are available from the component web pages of the Online Software website at:

http://atlas-onlsw.web.cern.ch/Atlas-onlsw/

The recommandations of the Atlas TDAQ team for the software development process can be found at:

http://atlas-connect-forum.web.cern.ch/Atlas-connect-forum/

where many helpful hints can be found, as well as rules for writing different types of documents
related to software development process (templates and examples in Word and in Framemaker).

 Some good
advice

Don’t try to skip the first exercises, the other exercises depend on their successful
completion.
12 Online Software Tutorial

Chapter 2
Controller

This part of the exercise explains how to develop a simplified custom controller in C++
using the Run Control skeleton. You will learn how a controller operates according to the
standard finite-state-machine and how to access other Online software components from a
controller. In this chapter you have two exercises. In the first exercise you will learn about
providing a controlled application. In the second one you will learn how to provide a
controller.

The Run Control
system

The run control is one of the software components of the ATLAS Online software. It
controls data-taking activities by coordinating the operation of the DAQ sub-systems. It has
user interfaces for the shift operators to control and supervise the data-taking session and
software interfaces with the DAQ sub-systems and other Online software components.
Through these interfaces the run control can exchange commands, status and information
used to control the DAQ activities.

Through the user interface the run control receives commands and information describing
how the user wants the experiment to take data. It allows the operator to select a system
configuration, parameterize it for a run and start and stop the data taking activities.

The run control system operates in an environment consisting of multiple partitions that
may take data simultaneously and independently. Each copy of the run control is capable of
controlling one partition.

The run control needs to send commands to the other systems in order to control their
operation and to receive change of state information. The external systems are autonomous
and independent of the run control so their detailed internal states remain hidden. If a
system changes state the run control reacts appropriately, for example, stopping the run if a
detector is no longer able to produce data. The run control interacts with a dedicated
controller for each sub-system.

As already said, in this chapter you have two exercises. In the first exercise you will learn
how to implement a controlled application at the bottom of the Run Control tree. In the
second exercise you will learn how to customize a controller in the middle of the Run
Control tree. You should use the first technique everytime your controller is controlling
hardware devices and the second everytime your controller is controlling other application.
The RCD exercise (Chapter 8) is a framework based on the first exercise.

Controller A controller receives commands from the outside world. Commands cause a controller to
execute actions which potentially change the state of the controlled apparatus. The state of
Online Software Tutorial 13

Controller
the apparatus is published by the controller to make it “visible” to the outside world. A
controller can also react to local events occurring in the apparatus under its responsibility
(for example buffer overruns). Typically its reaction will be to execute some actions and
potentially change its visible state.

A controller uses other Online components to fulfill specific functionality:

• its parameters and relationships with other controllers are retrieved from the
configuration database,

• it publishes its own state information in the IS,

• it produces MRS error messages to inform other programs if errors occur.

• it uses the PMG (Process Management) to start, monitor and stop software processes.

The interaction between a controller and the other Online software is shown in
Illustration 2.1.

The behaviour of a controller is modelled by a state machine (Illustration 2.2). The state
machine represents the state of the apparatus under its control and how it reacts to
commands.

Although the status of each piece of controlled apparatus is modelled by the same set of
states, the actions required to cause the apparatus to change from one state to another will be
different. The controller skeleton has been designed to be a general template. Developers of
the various controllers in different parts of the experiment customise the behaviour of their
particular controller by adding code to implement the required behaviour within this
generalised framework.

To the operator only a simplified state machine is exposed. The relevent states are:

• None - after starting up the controller,

Allowed Commands in this state: Boot;

• Initial - after the controller has launched and established connections to its children,

Allowed Commands in this state: Config;

• Connected - all important initialisation and configuration of the subsystem has been

Illustration 2.1 Interactions between a controller and other Online software components

Controller
error

controller parameters

Configuration
database

Information
Service

Message Reporting
System

operator or
parent controller

messages

and hierarchy

commands

controller‚Ä
state

Process
Management

manage child processes
14 Online Software Tutorial

Controller
performed,

Allowed Commands in this state: Unload, Start;

• Running - data taking activity for the controller,

Allowed Commands in this state: Pause, Stop;

• Paused - data taking temporary halted,

Allowed Commands in this state: Continue, Stop.

Transition from one of these states to the next involves "hidden" intermediate states, that
provide the possibility to arrange actions in the different controllers in time.

To the developer a more complex picture of intermediate states is exposed. The developer
has the choice to implement actions in different action routines. In case of complex
scenarios, synchronisation to other controllers is an important aspect.

Illustration 2.2 Statemachine as seen by the Operator. Some commands hide multiple
transitions.

PAUSED

NONE

INITIAL

CONFIGURED

RUNNING

boot shutdown

configure

start

pause

unload

stop

continue

PAUSED

NONE

INITIAL

CONNECTED

RUNNING

boot shutdown

configure

start

pause

unload

stop
Online Software Tutorial 15

Controller
Run Control
Applications

In this chapter, dedicated to the Run Control component, you will learn how to implement and
use two different types of applications. In the first exercise you will learn how to implement a
controlled application at the bottom of the Run Control tree. In the second exercise you will
learn how to customize a controller in the middle of the Run Control tree. The first technique

Illustration 2.3 Statemachine as seen by the Developer

PAUSED

NONE

INITIAL

CONFIGURED

RUNNING

boot shutdown

configure

pause

disconnect

unconfigure

stopRecording

CONNECTED

READY
ROIBSTOPPED

L2SVSTOPPED

L2STOPPED

EBSTOPPED

stopROIB

stopTrigger startTrigger

resume

prepareForRun

stopEB

stopL2

stopL2SV

EFSTOPPED

stopEF

connect
16 Online Software Tutorial

Controller
should be used everytime a controller is controlling hardware devices and the second everytime
a controller is controlling some other application. For what concerns their description in the
configuration databse, these applications shall always be described as an instance of the
RunControlApplication class which extend the RunControlApplicationBase. Controllers are
often described as an instance of the RunControlApplication class, while controlled applications
are normally described with custom classes, which describe the parameters needed by the
specific hardware (see RCD example exercise).

Exercise 1:
Controlled

Application
example

In this part of the exercise you will learn how to develop a controled application. We will use a
data taking example application (ExampleApplication.cpp) to show how to create a state-aware
application. For this exercise you will use two other files which describe the controlled
sub-system item (ControlledApplication.cpp and ControlledApplication.h), containing
ControlledApplication class. This class inherits from the Controllable interface. In
the ExampleApplication.cpp file an instance of this class is passed as a parameter to the
ItemCtrl. The methods of this class will be called whenever the application receives the
corresponding command. Obviously, we do not have a true subsystem available for the data
taking, so the actions performed on it are simulated using software which runs on the computer
used for the training.

The controlled application example operates within a partition containing one single segment,
named MySegment, containing one ROD crate with a single module and controlled by a
rc_empty_controller. The module needs to be sent commands to be properly configured before a
run. In addition statistical monitoring is simulated by updating some information in IS. To keep
it simple the event number is published in IS as Integer number. The name of the information is
given by the configuration and is composed out of the name of the first crate and its first module,
e.g. DF.RODCrate01.CounterModule. This you can find it defined in the configuration
database of the train_01 partition as a LVL1InfoSource.

The module has a counter which should be initialised and monitored while in the Running state.
The counter value should be published in the Information Service so that it can be viewed by the
operator. To simulate monitoring the counter during the run, at start DAQ command in the IGUI
the counter starts and this value is increased as long as the system is in Runnung state. At Pause
the counter si paused, at Continue the counter is increased again every time the IPC alarm is
fired. The counter is stoped at Stop command. The IPC alarm itself shall be created at
prepareForRun and launched at the startTrigger transition.

It is possible to run and debug a controlled application interactively. For this it is sufficient to
launch the application from the shell with an extern command line option <-i>.

Publishing IS
information

Run Control Applications publish IS information to inform the other sub-systems and the human
operator of apparatus specific information that may change during a run. For example, a ROD
module may publish counter values representing the number of event fragments treated since the
start of run, how many have been rejected by the trigger etc. Such information should be updated
at regular intervals but not at a high frequency because the IS is not a real-time facility. An
update interval of several seconds is normally suitable.

The controlled application uses the IS internally to publish it’s state information. It creates an
ISInfoDictionary object during initialisation and this dictionary object is made available to
controller developers via the is_dict attribute of the rc_manager class from which rc_interface
itself inherits.

In order to publish a piece of information in the IS, it must first be inserted into a server. This is
done during the Configure transition (see Illustration 2.4).

The specification for the controlled application says the counter value for the module in the ROD
crate should be published periodically while in the Running state. An IPCAlarm is used for this
Online Software Tutorial 17

Controller
purpose beeing called periodically. In controlled application the value of the counter is defined,
increased and updated in IS by the ControlledApplication::periodic method.

Directory
structure for

controlled
application

exercise

The source code for this second exercise is held in the ControlledApplication directory.
In this directory you will find also the following subdirectories:

databases/initial Database to be used for this exercise

databases/solution Solution database for this exercise

solution Solution code files for this exercise

.Accessing the
source code

The files containing the source code for this exercise are the following:

ControlledApplication.h Header file for example Sub-system Item definition

ControlledApplication.cpp Example Sub-system Item definition

ExampleApplication.cpp Controlled application example declaration

Illustration 2.4 Example for updating the IS information

Illustration 2.5 Example to create an instance of RC::Controllable

bool ControlledApplication::periodic(void * parameter)

{

ControlledApplication * that = static_cast<ControlledApplication*>(parameter);

that->evNr_ = evtNr_ + 1;

try {

ISInfoDictionary(that->partition).update(that->isname_.c_str(),that_>evtNr_);

} catch (daq::is::Exception ex) {

ers::error(ex);

return false;

}

return true;

}

std::string myName(name);

std::string myParent(parentname);

/** Create an instance of ControlledApplication*/

RC::Controllable * CtrldApp= new ControlledApplication(myName, mrsFlag,

mrsInterval);

RC::ItemCtrl * myItem = new RC::ItemCtrl(ssi, interactiveMode, myParent);

myItem->run();

delete myItem;

ERS_DEBUG(0, “Exiting from” <<CtrldApp->getName().c_str() <<“.”); std::exit

(EXIT_SUCCESS);
18 Online Software Tutorial

Controller
Makefile makefile to compile and link the controlled application example

To browse and modify the source code, open the ExampleApplication.cpp and the
source files in your favourite editor (e.g. nedit).

Prepare the
databases

The databases we will use for this exercise will be the general databases located in the
${MY_PATH}/databases directory. The train_01.hw.data.xml is the main database,
containing the Partition object train_01. First go to this databases directory and copy the
specific database (train_01.include_ctrldApp.data.xml), located in
ControlledApplication/databases/initial subdirectory, to the standard place for the databases
by using the following commands:

> cd ${MY_PATH}/databases

> cp
${MY_PATH}/ControlledApplication/databases/initial/train_01.include_ctrldApp.data.xml
.

In a window which has all the environment set for training exercises open the main partition file
by the command line:

 > oks_data_editor $TDAQ_DB_DATA

Now you have to do the following steps in order to provide the databases for this exercise:

• Step 1. Include the new databases file you just copied in the databases subdirectory in the
partition database train_01.data.xml. In the main panel of the oks_data_editor you can see
the table named Data Files. In this table you have to find our partition database file, namely
train_01.data.xml. Check this file has access for writing. If it is not, use chmod u+w
command to set the write permissions for this file. Then you have to doubleclick left mouse
button on this file. A new panel will show up in which you can see Include files table. In this
new table press the right button and choose menu Add from, then choose menu working
directory. In opened panel you select the needed file to be included in our partition database
(train_01.include_ctrldApp.data.xml). This should be listed now among the files in the Data
Files table of the oks_data_editor. Push the right mouse button of the mouse when pushing
the train_01.data.xml file and choose Save then exit the oks_data_editor. The database wil
be saved with the newly included files. Open the oks_data_editor again and verify your
new database file was iincluded among the files in the Data Files table.

• Step 2. At this moment you have to set a new segment (MySegment), provided for this
exercise, in the Partition train_01 object and to disable the segment which is allready set in
the train_01 partition (RODCrate1). To do this, select with the left mouse button in the
Classes panel the Segment class. Push the right mouse button and select Show in the pop-up
menu and a window containing the two segments will show up. Doubleclick the left mouse
button in this new window on the needed segment (MySegment), a new window will show
up and select in the menu Select. Using the same procedure select and display in the Classes
panel the train_01 object of the Partition class. In the partition window push the right
mouse button in the Segments relationship window and in the pop-up menu which show up
select Add Object [MySegment@Segment] option. As a result, your segment should be
added in the relationship and displayed now in the Segments window of the partition object.

Now you have to disable the old RODCrate1 segment. Use the same procedure as before to
select this segment and to add it to the Disabled relationship in the train_01 Partition
object.

• Step 3. At this moment you have to add the object My_example_application@Binary to the
MyRepository@SW_Repository object. Use the same procedure as before by selecting the
My_example_application object of the Binary class and adding it to the SW_Objects
relationship of the MyRepository object of the SW_Repository class.

• Save the database and exit the oks_data_editor.
Online Software Tutorial 19

Controller
Modify the source
code

a. Use your favorite editor to add a line of code in the ExampleApplication.cpp
file, held in the ControlledApplication subdirectory, in order to create an
instance of the RC::Controllable class, named CtrldApp (see Illustration 2.5 as
an example).

b. Modify the source code in the ControlledApplication.cpp file in order to
update in IS the information for the countor held in evtNr_ (see Illustration 2.4).

How to build the
controlled

application

You should now have all the source code necessary for the controlled application example.
Change to ControlledApplication subdirectory.

You can now build this example using the makefile provided, but you have to set first the
CPLUS_INCLUDE_PATH environment variable, which for slc4, in case you are using the
CERN afs LCG installation, will be:

> export
CPLUS_INCLUDE_PATH=/afs/cern.ch/sw/lcg/external/Boost/1.34.1_python2.5/
slc4_ia32_gcc34/include/boost-1_34_1,

> make # compile and link the controlled application

> make install # install the executable

You should have now in the installed area (which is ${MY_PATH}/your_Tag_value/bin) the
My_rc_example_application binary.

Testing the
controlled

application
example

When everything compiles and links correctly, you can test it as part of the small partition
train_01 introduced at the start of the tutorial. The setup_daq script can be used to start the
partition in a window where all the environment variables for the training package are set:

> setup_daq partition_name

Where partition_name is the name of the partition, train_01.

First will show up the Infrastructure Status window, displaying the status of the services
needed to run the partition. When all the infrastructure components are in the RUNNING
state, the IGUI will show up. In case some of the components are not in the RUNNING
state, use the Retry button to restart and test the infrastructure components. In the IGUI
you have to pass the DAQ through all the states needed for a data taking sequence.
Therefore you have to push the following buttons, in this order, to start the data taking
session: Boot, Config, Start. Keep the DAQ for a while in the RUNNING state and start the
20 Online Software Tutorial

Controller
sequence to stop the DAQ: Stop, Unconfig, Shutdown.

Checking IS
information

You can check now if your controlled application is publishing the correct information to IS
when your partition is Booted and in the Running state. The is_monitor (see Illustration 2.6)
provides a basic GUI for viewing IS information. You can start this application either using the
IS button in the top right side of the IGUI, or using the command line in a new window having
all the environment for training set:

> is_monitor

• Select the name of your partition. The list of IS servers will appear. Select DF then press
“Show available information objects” icon (or double click the DF line) and the list of
information items will appear

• Select your parameter and its value will be displayed.

• Wait while the partition is in the Running state to see the information changing in the IS.

More exercising Using this exercise as an example you can change now the ControlledApplication creating an
instance of your own implementation and get your own controlled application example.

Illustration 2.6 is_monitor application
Online Software Tutorial 21

Controller
Exercise 2:
controller

example

In this part of the exercise you will use the controller skeleton to develop an example custom
controller. This controller will control the application from the previous exercise. Besides, this
controller will control an external program (Python script). This kind of customized controller
should be used when you have to control other applications and do system specific things. In
case you do not have applications to control, you do not have to customize the controller.

The example controller operates within a partition consisting of one ROD crate segment (namely
RODCrate1), controlled by our controller. The segment contains a controlled application in
charge of the RODCrate1 and another process which does not implement the RC finite state
machine.

In this example several simple actions are implemented:

a. The predefined external program, training_demo.py, is used to simulate a monitoring
activity. Communication to this program is performed using standard UNIX signals: (SIG1
= next event, SIG2 = next run, TERM = end of program). The external program will be
started at Boot action. The starting script of this program (training_demo_start) will be
added as an application to our segment in the configuration database of the partition.

b. The statistical monitoring information is produced by the controlled application you used in
the previous exercise, which has to be added as an application to the segment. To keep it
simple the event number is published in IS as Integer number. The name of the information
is given by the configuration and is composed out of the name of the first crate and its first
module, e.g. DF.RODCrate01.CounterModule.

While DAQ is in the running state, the controlled application updates periodically the
counter value and publishes it in IS server to simulate data taking activites.

c. The controller has to manage the external program and the controlled application, verify
their status and perform the necessary cleanup.

Every transition of the controller has an associated action . The action is a method that should
return a boolean value. If the value returned is true then the transition is considered to have
completed succesfully. If it returns a false value then it is considered to be an error so the
controller makes the transition but also enters the Bad state and sends an MRS error message
reporting the problem..

RC::UserRoutines
class

The RC::UserRoutines class encapsulates the controller skeleton. It has virtual methods defined
for all transitions. For example the method associated with the load transition is called
loadAction By default, all methods are empty and action methods return true (i.e. complete
successfully). No parameters are required for any of the methods.

To build a controller you must define a class that inherits from the class and overload the
appropriate methods to perform the necessary actions.

For this exercise, such a controller class has already been defined, called CrateController,
but a few commands are missing from its methods which you will need to complete. By studying
the diagram on the previous page and the code that already exists in other methods of the class, it
should not be to difficult to add the missing commands.

Directory
structure for

controller
exercise

The source code for this second exercise is held in the controller directory, where you will
find the source code of the controllers files:

CrateController.h CrateController definition

CrateController.cxx CrateController declaration

crate_controller.cxx controller main program

get_eventcount.cpp program which gets the event counting

Makefile makefile to compile and link the controller
22 Online Software Tutorial

Controller
In the same directory you will find the following subdirectories and files used in the controller
exercise:

data/atlas_event.gif .gif file used by the Python script

solution Solution code files for this exercise

This exercise uses also the files stored in the scripts directory of the training package:

training_demo.py CPython program which will be controlled

training_demo_start CScript for starting the Python program

Accessing the
source code

As have been said, the source code for the controller is held in the controller directory.
These are the important files:

CrateController.h CrateController definition

CrateController.cxx CrateController declaration

crate_controller.cxx controller main program

To browse and modify the source code, open the CrateController.h &
CrateController.cxx and crate_controller.cxx source files in your favourite
editor (e.g. nedit)

Modify the
database

The train_01.hw.data.xml database file, from the databases subdirectory, contains
the hardware repository for the configuration presented earlier. As mentioned in the introduction
chapter, this database file should be modified to include the hostname of your own workstation.
Please refer to the section “Setting up the example database” in the introduction chapter for how
to do this.

To prepare the database for this exercise you have to use the oks_data_editor in a window where
all the environment variables have been set for release and for training package:

> oks_data_editor $TDAQ_DB_DATA

Now you have to do the following steps in order to provide the databases for this second
exercise:

Step 1. After performing the controlled application exercise, in the database the
train_01@Partition object should contain two segments: MySegment and RODCrate1, but the
RODCrate1 segment should be disabled.For this second exercise you have to enable the
RODCrate1 segment and disable now MySegment instead. Using the procedure described in the
previous exercise you should remove the RODCrate1 segment in the relationship Disabled of
the partition object and put the segment MySegment instead.

Step 2. After enabling the RODCrate1 segment in the train_01@Partition object, you should
add the two applications: training_demo@Application and
My_ctrldApp@RunControlApplication objects. These applications there are allready defined in
the database, you have only to select them and put it into the Applications relationship of the
RODCrate1 segment object. To do this, you have first to select with the left mouse button in the
Classes panel the Application class. Push the right mouse button and select Show in the pop-up
menu, and a window containing the applications will show up. Select and push the right mouse
button in this new window on the needed application (training_demo), a new menu will show
up and select in this menu Select option. Using the same procedure display the RODCrate1
object of the Segment class, point with the right mouse button in the Applications relationship of
this object and select in the pop-up menu Add. The training_demo@Application object should be
displayed now in the Applications relationship of the RODCrate1 segment. In the same way you
add in the same place the My_ctrldApp@RunControlApplication object. Save and exit the
database.
Online Software Tutorial 23

Controller
Modify the source
code

• Use your favorite editor to add a line of code in the
CrateController::checkStatusAction() method (CrateController.cxx
file, held in the controller subdirectory), in order to send an ers mesage when
the controller successfully signaled to the Python script to display the event
number. When you have to send an ers information you should have included
first in your file ers/ers.h header file, then write a code line like this:

ERS_INFO(“Your message text”);

How to build the
controller

You should now have all the source code necessary for the example controller. Take care to be in
the controller subdirectory. Since release tdaq-01-06-00 the controller uses the ers package,
which uses Boost, you have to add in the Makefile the include path for Boost or to extend the
include path. For example, when working on platform/compiler SLC4/gcc-3.4, using external in
AFS, use the following command:

> export
CPLUS_INCLUDE_PATH=/afs/cern.ch/sw/lcg/external/Boost/1.34.1_pyt
hon2.5/slc4_ia32_gcc34/include/boost-1_34_1

You can now build the controller using the makefile provided:

> make all # compile and link the controller and get_eventcount

> make install # install the binaries just created and the script

Detecting faults If you have a problem starting the partition you can use the diagnostics package
(See “Diagnostics Test” on page 35.) to determine the error. In general, users should not need to
know where logfiles are physically stored. It is sufficient that you open the DVS (click button in
IGUI), follow the graphical tree that you get and click on the application for which you want to
see the logfile.

Online software produces log files for each program that is run and you can use the log files to
see the exact details of what was executed. The root of the directory containing logs can be
defined by a user by specifying in the configuration database the “LogRoot” attribute of his
Partition object. The default value is "/tmp/test_logs". The log files are written by default to this
directory:

 $/tmp/test_logs/<partition name> # log file directory

Usually all the controlled applications started via the process manager will have following
names for log and error files:

UID_host_timestamp.out

UID_host_timestamp.err

where:

• UID = application UID as specified in the database

• host = host on which the application is running or was running

• timestamp = proces creation time, number of seconds since 00:00:00 UTC, January 1,
1970.

The directory where to archive log files can be specified by setting the Variable
TDAQ_LOGS_ARCHIVE_PATH in the database. The default value is ’/tmp/backup’.
24 Online Software Tutorial

Controller
How to test the
controller

When your controller compiles and links correctly, you should be able to test it. Make sure that
the controller can start an application using the screen (e.g. use “xhost +” command in some
other window).

Once you have all the environment set, you can start the partition by calling the setup_daq script:

> setup_daq partition_name

where partition_name is the name of the partition, train_01.

First will show up the Infrastructure Status window, displaying the status of the services needed
to run the partition. When all the infrastructure components are in the RUNNING state, the IGUI
will show up. In case some of the components are not in the RUNNING state, use the Retry
button to restart and test the infrastructure components.

In the IGUI you should press Boot and Initialize to cause your controller to be started by the
DAQ Supervisor. At this moment you have to wait for a new showing up window. The caption of
this window should be “Online Software Example” and was started using the Python script. In
this window you will have the same Run Number displayed as in IGUI and the number of
counted events (Event) will be 0.

Pushing Config and Start in the IGUI will start the data taking session. In the Running state,
periodically the atlas_event.gif will be displayed in the Python window and the event number
will be changed.

Now you should verify the count number is correctly displayed by using is_monitor to display
the information, as have been described in the previous exercise.

In the log file of the RODCrate1 controller (the file name, as already said, will be like
RODCrate1_yourHostName_timeStamp.out), stored in the already mentioned log file directory,
you will find the ers information sent by the controller during the run about successfully sent
signal to Python event display.

The same information can bee seen in the MRS display of the IGUI when the settings for
displaying MRS messages is set to “ALL”. To do this you have to select the MRS panel in the
right side of the IGUI, verify that the “Global Filter settings” has the current filter set to
Default (this means NOFILTER) and in case this is not push the “Default” button. In the same
panel you have the Current subscription displayied, this should be set to ALL (push the “ALL”
button only). With these settings for the MRS display of the IGUI your ers information message
will show up in the MRS window each time the signal was successfully sent to the event display
of the python application.

To stop the data taking session you have to push Stop and Unconfig in the IGUI. Then stop the
partition by pressing Shutdown and EXIT from the IGUI.

Special note Save the databases provided in this exercise in a safe place. To avoid any
other problems which could appear during modifying databases in the follow
up exercises, would be better to start any other exercise with these
databases. The databases, located in ${MY_PATH}/databases directory, which
you will use it for the next exercises are the following:

train_01.data.xml

train_01.sw.data.xml

train_01.hw.data.xml

train_01.include_ctrldApp.data.xml
Online Software Tutorial 25

Controller
26 Online Software Tutorial

Chapter 3
GUI panel

This part of the exercise shows you how to develop a simple panel in Java to visualize and
track the value of a parameter of a module in the ROD crate. The panel will be integrated
with the standard Online Integrated GUI.

The integrated
GUI

The Integrated Graphical User Interface (IGUI) is one of the software components of the
Online Software sub-system of the ATLAS Trigger/DAQ project. The IGUI (see
Illustration 3.1) is intended to give a view of the status of the data acquisition system and its
sub-systems (Dataflow, Event Filter and Online) and to allow the user to control its
operation.

The IGUI interacts with many components in a distributed environment and uses CORBA
interfaces for communication with other components. It has a modular design for easy
integration with different sub-systems. It is implemented in Java and uses the Java
Foundation Classes (JFC) for portability and swing for graphical widgets.

IGUI is a Java application (JFrame). On the left side of the frame are displayed the Main
Commands and below are some major Run Parameters, such as run and event number. On
the right side there are different Panels which can be chosen by clicking the corresponding
tab buttons:

• Run Parameter panel, which is the default view, showing all the run parameters and
allowing the user to set them;

• Run Control panel, showing the tree and status for each controller with the possibility
to send commands to a particular controller;

• DAQ Supervisor panel, containing the DAQ Supervisor expert commands;

• Process Management (PMG) panel, showing the list of PMG agents and processes;

• MRS panel, showing all the messages received grouped in a table and allowing the user
to change the filter, subscription and log control;

• DataFlow panel, showing the data flow configuration and data flow parameters.;

• Monitor panel, showing the monitoring information, with the possibility to start and
stop monitoring tasks.;

• Segment & Resource panel, showing , the tree of segments and resources from the
configuration database, with the possibility to disable and enable segments and
resources;

• Infrastructure panel, showing the status of the different infrastructure servers of the
Online Software Tutorial 27

GUI panel
Online Software.

Others panels could be added, displaying the status of other DAQ components or
sub-systems. The aim of the exercise is to show how such a panel can be developed.

Illustration 3.2 shows the interaction between the IGUI and other Online components. The
IGUI reads the list of partitions from the Inter Process Communication (IPC) server and lets
the user select one of them. In interaction with the Resource Manager server the type of the
access control is decided (only status display, normal user control or DAQ expert control).
The run control configuration and the data-flow configuration are read from the
configuration database. The information about the sub-systems or components status (run
control status, lists of Process Manager agents and of running processes, Data-Flow
modules statistics) is read from the Information Service (IS) or is automatically obtained
using the IS notification mechanism. The run parameters can be set by the user and are
stored in the Information Service. Through the IGUI the user can send commands to the
Run Control main components (DAQ Supervisor and Root Controller). The messages sent
by the Message Reporting System are received and displayed by the IGUI. The user can
send commands to the MRS (to change the filter or subscription criteria, to set the log
control). The IGUI can be a client of the Process Manager, allowing to start processes
(monitoring tasks).

In order to give the developer of a new panel the possibility to use some of the classes
designed to interact with different components, the on-line documentation of the IGUI
(packages, classes, attributes, methods) can be found at:

http://atlas-onlsw.web.cern.ch/Atlas-onlsw/components/igui/Welcome.html

IGUI panel
example

In this part of the exercise you will develop a panel to display the information published and
updated by the crate controller developed in the first part of the exercise.

In order to be added to IGUI, the only requirement for a panel is to extend the IguiPanel
class in the package igui. IguiPanel extends the class javax.swing.JPanel and defines some
interfacing methods which are common for each Panel and which each Panel have to supply
(e.g. a method returning the panel name).

The panel will contain only two labels, one for the module name (read from database) and
another for the module value (updated by IS notification).

RDB interface The panel needs from the database the information about the configuration (crate, module,
parameter). The IGUI gets this information through the Remote Database (RDB) server
using the igui.RdbInterface class which implements the CORBA client side for remote
database access. The following methods are useful for the panel design:

• getPartition - checks that the working partition is defined in the database;

• getObjectsOfRelationship - gets a list of all the objects related by a relationship to an
object in the database (for example all Modules contained in a Crate).
28 Online Software Tutorial

GUI panel

Illustration 3.1 Integrated Graphical User Interface

Illustration 3.2 IGUI context diagram

IGUI

Configuration
Database

Message
Reporting

System

Information
Service

Run
Control

Process
Manager

Resource
Manager

Inter
Process

Communication

control configuration
detector configuration

informations
run parameters

commands

permission
authorization

messages
commands

status
commands

partition list
Online Software Tutorial 29

GUI panel
IS interface For the interaction with the Information Service there is a special Java package, is, with classes
as AnyInfo, InfoEvent and Repository and the interface InfoListener: The documentation on IS
Java API can be found at the Information Service web page:

http://atlas-onlsw.web.cern.ch/Atlas-onlsw/components/is/Welcome.htm

The Repository class (Illustration 3.3) contains methods to get information from the IS
(getValue), to create new information (insert) and to update it (update) or to remove it (remove).
In addition the subscribe mechanism is implemented (methods subscribe and unsuscribe) to
have the IGUI notified each time the IS information changes. The subscription method passes as
parameter an object that implements the InfoListener interface. The user must define the
specific actions to be done when notification occurs in the infoCreated, infoUpdated and
infoDeleted methods of a class implementing the InfoListener interface. When a notification
occurs, the information is passed as an InfoEvent object. The InfoEvent class has the method
getValue which sets the attributes values of the information object to the values corresponding to
the current event. It is possible to pass to this method either an object of the AnyInfo class or an
object of the same class as the class of the object whose change is reported.

In the actual design the DAQ configuration uses six IS servers (four for the information
published by Online components, Run Control, Process Manager, Monitoring and
Histogramming, one for Data-Flow sub-system and one for Run Parameters). For this exercise
the Data-Flow IS server will be used (the server name is “DF”).

IGUI panel
methods

The panel will have a constructor and two methods, one to read from database the parameter and
information names and another to execute the specific action (set the text in the parameter value
label) when the information is updated.

In the constructor (RodPanel), the following operation will be performed:

• get the partition name from the class in which panel will be inserted;

• read database to find the parameter and information names;

• add labels to the panel using a Grid Layout;

• subscribe for notification on the IS server.

The method to read from the database through RDB server (readDB) uses the RdbInterface
class. It is supposed that in the database there is only one crate, having one module with one
parameter. The following steps have to be done:

• find the segment object;

• get the name of the crate (related to the Segment by a “UsesObjects” relationship);

• get the name of the module moduleName (related to the Crate by a “Modules” relationship);

• get the value of the parameter moduleValue ;

• use the parameter name to set the text in the parameter name label.
30 Online Software Tutorial

GUI panel
The method to execute the specific action when the information is updated (infoUpdated) will
set the text on the module value label using the information received by the callback mechanism.
The code has to:

• check if the information name is correct;

• retrieve the information from the InfoEvent;

• use the information data to set the text in the parameter value label.

Illustration 3.3 On-line documentation for Repository class

Illustration 3.4 RodPanel attributes and methods

RodPanel

readDB()

infoUpdated(...)

configurePanel()
subscribeForIS()
infoCreated(...)
Online Software Tutorial 31

GUI panel
IguiPanel
Interface

Each user panel for the Igui Frame has to extend the class IguiPanel which defines some
methods the user panel has to supply like a method panelDeselected() which should contain the
code which should be executed, when other panel is selected.

One of the method is called getTabName() which gives back the name of the panel which should
be used for the tab buttons in the IGUI frame. This method has to be supplied by you.

All the methods which are declared abstract in the class IguiPanel have to be declared, however,
if there is nothing to be done, one can just declare an empty method.

Directory
structure for

panel exercise

The source code for this second exercise is held in the panel directory. In this directory you
will find also the following subdirectories:

panel Source exercise java files

panel/solution Solution java files for this exercise

panel/solution/databases Solution databases for this exercise

Accessing and
modifying the

source code

As mentioned above, the source code for the panel (see also Illustration 3.4) is held in the
panel subdirectory. The file to edit is:

 RodPanel.java

To browse and modify the source code, open the source file in your favourite editor.

The source code does not contain the interaction with the Information Service. If the code is
compiled and tested, the panel will have the labels, but the parameter value will be not updated.

Modify the source code to add the following to the RodPanel class:

• the subscription to IS in the constructor; (Illustration 3.5)

• an infoCreated method; (same as infoUpdated)

• an infoUpdated method; (Illustration 3.6)

• an infoDeleted method (empty method)

• an getTabName method (Illustration 3.7)

 Compiling and
testing the panel

Verify the environment variable PATH includes a reference to the jdk directory (e.g.
/afs/cern.ch/sw/java/XXXXX/jdk/sun-1.5.0_02/bin)

Verify the environment variable CLASSPATH includes ${MY_PATH}/panel,
${MY_PATH}/monitoring/java and all the jar files (ipc, is, mrs, rdb, igui, dvsgui, dvs, ed, emon,
...) held in the Online software release directory ${TDAQ_INST_PATH}/share/lib. Change
directory to the panel subdirectory and compile the code:

 > javac RodPanel.java

To test the panel before including it in the IGUI we use a simple TestPanel class (see
TestPanel.java file in the panel directory). This class has a main method in which the
RodPanel is added to a frame. The TestPanel was automatically compiled at the same time as the
RodPanel.

To test the panel in stand-alone mode (i.e. detached from the IGUI) the following steps have to
be done:

• Verify the TDAQ_IPC_INIT_REF environment variable is set ;

• Use oks_data_editor and proceed as in the previous chapter, in case this is not done, to
disable in the Partition object the MySegment segment and enable the RODCrate1 segment
(this can be done also after starting the partition, in the “Segment & Resource” panel of the
32 Online Software Tutorial

GUI panel
IGUI);

• Start the partition using the command:

> setup_daq partition_name

• In some other window, where all the environment variables are set for training exercises
start the TestPanel:

> java TestPanel partition_name

Illustration 3.5 IS subscription

Illustration 3.6 infoUpdate method

Illustration 3.7 getTabName method

is.Repository isRepository = new is.Repository (new
ipc.Partition(partition));

try {

 isRepository.subscribe(serverName, ".*", true, this);

 } catch (is.RepositoryNotFoundException ex) {

 System.out.println(" RepositoryNotFoundException in RodPanel
subscribe !");

} catch (is.InvalidCriteriaException ex1) {

 System.out.println(" InvalidExpressionException in RodPanel
subscribe !");

}

public void infoUpdated(InfoEvent infoEvent) {

if (infoName.equals(infoEvent.getName())) {

is.AnyInfo ai = new is.AnyInfo();

infoEvent.getValue(ai);

moduleValue.setText(((Integer)ai.getAttribute(0)).toString());

}

}

/**
* method to return the name for the panel in the tab button
* <p>
* @return name of panel
*/

public String getTabName() {

String TabName = “MyPanel”;

return TabName;

}

Online Software Tutorial 33

GUI panel
Testing the panel
integrated in the

IGUI

We can test the panel integrated in the IGUI using two different methods.

1. Define in the window, where all the environment variables are set for training exercises, the
environment variable PROPERTIES, which will be taken into account as a parameter for the IGUI
starting. Do the following steps:
• set the PROPERTIES environment variable so that the setup_daq script will start the IGUI with

your panel:
> export PROPERTIES="-Digui.userPanel=RodPanel"

• start the partition:
> setup_daq partition_name

Now you can see in the IGUI your panel integrated.
2. Since tdaq-01-08-00, there is an other method to get the same result. IGUI uses the

dal_get_igui_setup utility for updating the environment variables PROPERTIES and CLASSPATH
with information about users panels specified in the configuration database. In this case you have to
define in the database IGUIProperties and an new provided object of the type JarFile for your panel.
The steps for this method are as follows:
• Open a new window, set the environment for the release, as is described in Chap.1.
• Modify, for this part of the exercise only, using a text editor the setup script of the training

(${MY_PATH}/.training.sh) by removing or commenting the 4 specific lines for adding to the
CLASSPATH the Java training directories and execute the modified training setup.

• Prepare the predefined directory to install the .jar file:
> mkdir ${MY_PATH}/share/lib

• Go to the ${MY_PATH}/panel directory and provide and install the specific file RodPanel.jar for
your panel:
> jar cvf ${MY_PATH}/share/lib/RodPanel.jar RodPanel.class
As a result in the ${MY_PATH}/share/lib directory should appear the RodPanel.jar file.

• Prepare the dababase using oks_data_editor by setting active the train_01.sw.data.xml
database. As has been previously described, create a new object of the class JarFile , having the
same value for object ID and Binary attribute (namely RodPanel.jar) and the BelongsTo
relationship set to the MyRepository object of the SW_Repository class, then Select the
RodPanel.jar created object. Display and modify the object MyRepository of the
SW_Repository class by adding the selected object you just created in the SW_Object
relationship, and by filling in the value of the IGUIProperties attribute (-Digui.panel=RodPanel).

• Define a new environment variable DATABASE, which should point to your main configuration
database using:
> export DATABASE=oksconfig:${MY_PATH}/databases/train_01.data.xml

• start the partition:
> setup_daq partition_name

Now you can see in the IGUI your panel integrated too.

Some other good
advice

Do not forget to restore the initial version of the .training.sh script. The modifications you
made in that script are used for panel exercise only, all the other exercises use the initial
version of this script.
34 Online Software Tutorial

Chapter 4
Diagnostics Test

This part of the exercises explains how to develop a test application based on a C++ test
template. You will learn how to make your own test repository and so integrate a new test
with the online Diagnostics component.

The Diagnostics
and Verification

System

The Diagnostics and Verification System (DVS) is one of the components of the ATLAS
Online software. It helps a human operator to initialize, test, setup and run the DAQ system
without deep knowledge of its structure and functional features.

The verification part of the DVS uses the Test Manager (TM) to test the configuration and
confirm functionality of any DAQ subsystem or a component. By grouping tests into logical
sequences, DVS can examine any component of the system (hardware or software) at
different levels of detail in order to determine the functional state of components or the
entire configuration.

A Test There are two distinct phases of creating a test: the first one is to write and compile the test
program and the second is to store the test in the test repository to make it available for the
Diagnostics framework.

There are a couple of requirements for a proper test program. The most important one is that
it has to return a valid test result. This result is passed as exit status of the program, which
implies that a test program should always finish with a proper exit status. The result of the
test has to comply with the POSIX 1003.3 definition and should be of type TestResult,
which is defined in the TM’s include file <tmgr/tmresult.h>.

typedef enum tmResult
{

TmPass = TM_PASS,
TmUndef = TM_UNDEF,
TmFail = TM_FAIL,
TmUnResolved = TM_UNRESOLVED,
TmUntested = TM_UNTESTED,
TmUnsupported = TM_UNSUPPORTED

} TestResult;

For a definition of the meaning of the results please refer to the Test Manager component
documentation (ATLAS DAQ TN 66:
http://atddoc.cern.ch/Atlas/Notes/066/Note066-1.html)
Online Software Tutorial 35

Diagnostics Test
Test Repository Test repository database stores all the information about tests. A typical test is described in a
database by one instance of Test, Test4Object or Test4Class class, one instance of
SW_Object class and few instances of Program class (one instance per platform).
Test-derived classes describe test itself, SW_Object and Program classes describe test’s
implementation as for any application. All this information is used by Test Manager (via
TestDAL and via Software DAL) to execute tests.

Typically, it is the developer of the test who creates all needed database objects in the Test
Repository database (and probably the repository data file also). Developer can create
separate repository database file with his/her own tests. This repository then shall be
included in the configuration database file, so DVS and TM are able to retrieve tests for a
particular objects from the configuration and execute them in the diagnostics framework.

Test, Test4Object and Test4Class classes are defined in
${TDAQ_INST_PATH/share/data/tmgr/schema/test-repository.schema.xml. This schema
shall be loaded with any configuration that uses Test Repository. Your partition data file
train_01.data.xml already has it loaded.

For the detailed description of TestDAL and Test Repository organization please refer to the
Test DAL note, published as

http://atddoc.cern.ch/Atlas/DaqSoft/components/diagnostics/testdal/Test
DAL.html

Accessing the
source code

The source code for the test is held in the diagnostics subdirectory. These are the important
files:

test_vme_interface.cc
- test template;

Makefile
- makefile to compile and link the example test;

To view and modify test’s source code, open the test template file in your favourite text
editor. It is shown on Illustration 4.1

Checking IS
information

In order to simulate a test for the module we propose to check the information in the IS
published by the controller. This information is the module counter. The name of the
information is taken from the database.

The controller periodically updates this information simulating the activity of the respective
module. The following steps should be done in order to verify that the controller is doing
this properly:

• Construct the information name

• Retrieve the information from IS

• Wait for the appropriate period of time. This period must be slightly bigger than the
information update frequency. It is enough to wait for 5 seconds.

• Retrieve the same information from IS again

• Compare the values of the two information objects (they should be different)
36 Online Software Tutorial

Diagnostics Test
• Return the appropriate result

Illustration 4.1 The complete test program for module

 // construct information name

 string name(is_name);
 name += ".";
 name += crate_name;
 name += ".";
 name += module_name;

 // get the value of information objects on is_name IS server.

 ISInfo::Status status;
 ISInfoInt value1;
 if ((status = id.findValue(name.c_str(), value1)) != ISInfo::Success)
 {
 if (verbose){

std::cerr << "ERROR:: findValue returns " << status << std::endl;
 }

return TmFail;
 }

 // The information for the module’s parameter shall be updated each 3
seconds, so we wait 5 seconds and check it again

 sleep(5);

 // again get the value of information objects on is_name IS server.
 // If the information is not found then return TmFail
 ISInfoInt value2;

 if ((status = id.findValue(name.c_str(), value2)) != ISInfo::Success)
 {
 if (verbose){
 std::cerr << "ERROR:: findValue returns " << status << std::endl;
 }
 return TmFail;
 }

 if (value1 == value2)
 {
 if (verbose){
 cerr << "ERROR:: value was not changed during 5 seconds " <<
endl;
 }
 return TmFail;
 }

 return TmPass;
}

Online Software Tutorial 37

Diagnostics Test
Retrieving
information from

IS

The value of an information item can be retrieved from the IS server using the findValue
method:

ISInfoInt value;

id.findValue(name.c_str(), value);

Check if an exception is thrown to verify successful completion of the operation.

• Modify the C++ test program template to add code that retrieves the
counter value from IS twice with a delay of 5 seconds between and
then compares the two values.

Build the test Change directory to the diagnostics subdirectory and execute the make command to build
the test binary:

> make

Test Repository
Browsing

(Modification)

The Test Repository is already created for you. There is no need to modify it. It is included
in your partition database file, so you can browse and edit it if needed in database editor
started by command:

> oks_data_editor $TDAQ_DB_DATA

After you load the configuration, select MyTestRepository.data.xml in the list of loaded
datafiles and check all objects defined in this repository:

• one TestSet class object - Training_tests -, which you have to select and link in the
"TestRepositories" relationship of the Partition’s class object train_01 using the
procedure described before.

• one Binary class object - my_test_sw -, which implements your test test_vme_interface.

• one Test4Object - MyTest - this is the most interesting object. Pay attention to the
following attributes:

– object_id - OKS ID of object you want to test. It is set to
’Module@CounterModule’, ID of the virtual module you intend to test with your
test. This means that you are testing one particular module and this test is not
applied to other instances of Module class..

– is-a relationship - links test object with my_test_sw object .

– init_timeout - set to default value 0. If you expect that your test may "hangs", put
this to some reasonable value (in seconds)

– host - the name of the host on which this test is executed by TM. If empty, the
default (local) host is used.

– parameters - command line parameters you want to pass to your test executable.
Note that for Test4Class parameters and host are configurable with help of template
syntax (See Test DAL link above for more info), but for Test4Object they shall be
specified explicitly.

– scope - define the system state in which you want to run the test. In your database
this attribute is set to ’run’, meaning that DVS will allow execution of this test only
if the system is in Running state.

– complexity - set it to value 2.
38 Online Software Tutorial

Diagnostics Test
Run DVS As soon as tests binaries and Test Repository are OK, DVS can be used to test loaded
configuration. DVS GUI can be started from the IGUI so use setup_daq to start your
partition:

• start the partition ’train_01’ :

> setup_daq train_01

Run DVS by clicking "DVS" button on the top of the IGUI window.

You can also start DVS as a separate application from the command line using the dvs_gui
utility. This utility needs the full path of the partition database file (or its relative path to
where you are). The command line would look like:

> dvs_gui ${TDAQ_DB_DATA} train_01

Load and Test
Configuration

When DVS window appears, it has already loaded your configuration. Select any
component in the testable components tree at the left panel of the DVS GUI and push the
’Test’ button to start testing and diagnostics inference for this component. To see the result
and output of the test you have just implemented, select the component CounterModule in
the Hardware/Segment RODCrate1/Crate ‘RODCrate1‘ subtree. Select in ‘Option‘ the
‘Level Selector‘ and set the value to 2 instead of the default value (()), then push the ‘Test‘
button. The result of the test will be seen in the ’Test Log’ panel, which you have to select
it on the right side main panel.

Note that your test will not be executed until the system is in Running state. An explanatory
message will appear in the Test Log panel. Use the IGUI window buttons to bring the
system in Running state. Changing in the database the Test scope attribute to ’any’, the test
should be executed regarless the system state.

Note that the test for the CPU Board can fail with the following error: "Computer CPU
Board ’xxxxxx’ is not running or has no remote shell (rsh) enabled". This is an error and
indicates that rsh to your machine xxxxxx does not work. You should check this separately
and try again. If you are using ssh instead of rsh (by setting the TDAQ_RSHELL_CMD
environment variable to ssh), note that this test still uses rsh exclusively, and will therefore
likely fail.
Online Software Tutorial 39

Diagnostics Test
40 Online Software Tutorial

Chapter 5
Event Monitoring

This part of the exercise explains how to develop an event sampler example in C++ and a
monitoring task example in Java, using the Event Monitoring system component of the
ATLAS Online Software. This exercise is useful to anyone going either to implement an
event sampler application that is responsible for supplying events to the event distribution
sub-system or to develop a monitoring task that reads event from the event distribution.

The Event
Monitoring

system

The Event Monitoring system is responsible for the event transportation from event
samplers providing event fragment sources up to the users’ monitoring tasks. The system
consists of the following sub-systems:

• Event Sampling, which is responsible for sampling event data flowing through the DAQ
system and transportation of these events to the event distribution sub-system, each
event sampler with responsibility for one crate of the DAQ system;

• User Monitoring task, which can request event fragments or full events with particular
characteristics from the event distribution sub-system using it’s public API;

• Event Distribution, which has a scalable architecture in order to be able to provide
reasonable event transportation performance independently of the size of the DAQ
system itself and a number of monitoring task working concurrently.

For more detailed information see the User’s Guides from the Event Monitoring Service
page:

http://atddoc.cern.ch/Atlas/DaqSoft/components/monitoring/Welcome.html

Event Sampler The event sampler application is responsible for the communication with the data flow
sub-system. It’s implementation is specific for the different sub-detectors and DAQ crate
types (e.g. ROD, SFC). The monitoring package provides only a skeleton class that defines
an interface to the event distribution sub-system. A user wishing to carry out event sampling
on his hardware must overload the methods in a “User” class which inherits from the
Online Software Tutorial 41

Event Monitoring
emon::PullSampling class. The user’s class that inherits from it is called MyEventSampler.
Illustration 5.1 shows how to declare it (My_event_sampler_impl.h file).

Monitoring Task The monitoring task has to be define from which part of the DAQ system the events must be
taken and identify certain event characteristics used to select events. In other words, using
the monitoring system’s terms and definitions, it is necessary to specify the events’
Sampling Address and Selection Criteria. Illustration 5.2 shows how to pass the Sampling

Illustration 5.1 MyEventSampler class declaration (C++)

class MyEventSampler: public emon::PullSampling

{

 unsigned int * event_;

 size_t size_;

 public:

 MyEventSampler(const emon::SelectionCriteria &sc,

 unsigned int * event, size_t size)

 : event_(event),

 size_ (size)

 {

 std::cout << "[MyEventSampler::MyEventSampler]

sampler initialization completed" << std::endl;

 }

 ~MyEventSampler()

 {

 std::cerr << "[MyEventSampler::~MyEventSampler]

Finalizing MySampler object ... ";

 std::cout << "done" << std::endl;

 }

 void sampleEvent(emon::EventChannel & cc)

 {

 cc.pushEvent(event_, size_);

 }

};
42 Online Software Tutorial

Event Monitoring
Address and Selection Criteria to the event distribution and get back the Event Iterator’s
reference using the select method of the emon class (file MonitoringTask.java).

Illustration 5.2 Defining sampling address and selection criteria (Java)

SamplingAddress sa = null;
SelectionCriteria sc = null;
String[] name = {args[2]);
 try
{
 sa = new SamplingAddress(args[1], name, (byte)1);

 sc = new SelectionCriteria(new
MaskedOctetValue(lvl1_trigger_type, false),
new SmartBitValue(new byte(0), Origin.AFTER_VETO, Logic.AND),
new MaskedLongValue(status_word, false),
new SmartStreamValue(new String(), new String [0],
Logic.IGNORE));

} catch (emon.CannotInitialize ci) {
 System.out.println("[MonitoringTask::main] Error:
initialization failed! Wrong arguments?");
} catch (emon.BadAddress ba) {
 System.out.println("[MonitoringTask::main] Error: bad
sampling address");
} catch (emon.BadCriteria bc) {
 System.out.println("[MonitoringTask::main] Error: bad
selection criteria");
}

Online Software Tutorial 43

Event Monitoring
Once the address and criteria have been defined it is necessary to create the EventMonitor
object and ask it to build the EventIterator for the these address and criteria. Illustration 5.3
shows how to do this (file MonitoringTask.java).

Illustration 5.3 Creating event iterator (Java)

Partition p;

if (args.length > 1)

 p = new Partition(args[0]);

else

 p = new Partition();

emon.EventIterator ei = new EventIterator (p, sa, sc,

buffer_limit, dispersion);
44 Online Software Tutorial

Event Monitoring
The instance of the EventIterator class that has been returned by the select method can be
used to access events. Illustration 5.4 shows how to do this (file MonitoringTask.java).

Monitoring
exercise

The monitoring test exercise will help you to develop an event sampler example in C++
which supplies events (from EventFragment.data data file, which you can find it in the
training/monitoring/data subdirectory) to the event distribution sub-system and a
monitoring task example in Java, that reads events from the event distribution. The exercise
will use the same databases (which you can find in training/databases subdirectory) as all
the other exercises do, and therefore the same partition train_01.

In the training/monitoring/cpp subdirectory you have all the C++ files you need to provide
the executable file for the event sampler. In the training/monitoring/java you will find the
java file for monitoring task. The solutions of the exercises are in the corresponding solution
subdirectories.

You will build the executable for both event sampler and monitoring task . You will modify
the databases in order to start the event sampler application by Run Control (by means of
setup_daq script). The solutions for databases are in the
training/monitoring/databases/solution subdirectory. You will check the functionality of the
event sampler by using the Event Dump application. You will execute the monitoring task to
get the events.

Illustration 5.4 Getting events (Java)

// Getting 100 events
//
int i = 0;
while(i < 100)
{
 int[] event;
 try
 {
event = ei.tryNextEvent();
 }
 catch(emon.NoMoreEvents e)
 {
continue;
 }
 catch(emon.SamplerStopped e)
 {
break;
 }

 i++;
 System.out.println("Event " + i + " received. Size is
" + event.length + ".");

 for (int j = 0; j < event.length; j++)
 {
System.out.print(event[j] + " ");
 }
 System.out.println();
}

Online Software Tutorial 45

Event Monitoring
Modifying the
source files for
event sampler

All the needed files to provide the events sampler application you have it in the
training/monitoring/cpp subdirectory: My_event_sampler_impl.h,
My_event_sampler_main.cc and My_event_sampler_impl.cc. In the same subdirectory are
all the needed makefiles.

• Modify the source file My_event_sampler_main.cc to create the
instance of the MyEventSampler class.

Modifying the
source files for

monitoring task

The file needed to provide the monitoring task application, MonitoringTask.java, is in the
training/monitoring/java subdirectory.

• Modify the source file MonitoringTask.java to declare and initialise
the sampling address and selection criteria variables

Building the
event sampler

You should have now all the source code necessary for building the event sampler example
application. Change to training/monitoring/cpp subdirectory. If you have already installed
the Online Software release and configured all the environment variables you need to build
training code against the release on your platform (sourcing the training configuration script
in the training directory), you can now build the event sampler using the makefile provided
in the package:

> make # compile and link the event sampler

As a result, you will have in the same directory the My_monitoring_sampler executable file.

Building the
monitoring task

You should have now the source code necessary for building the monitoring task example
application. Change to training/monitoring/java subdirectory. If you have already installed
the Online Software release and configured all the environment variables you need to build
training code against the release on your platform (sourcing the training configuration script
in the training directory), you can now build the monitoring task. First you have to check
that the environment variable CLASSPATH includes the path
${TDAQ_INST_PATH}/share/lib/ipc.jar and ${TDAQ_INST_PATH}/share/lib/emon.jar,
and add them if necessary.

> export
CLASSPATH=${TDAQ_INST_PATH}/share/lib/ipc.jar:${TDAQ_INST_PATH}/share/l
ib/emon.jar:${CLASSPATH}

You can now build the executable file for monitoring task:

> javac MonitoringTask.java

As a result, you will have in the same directory the MonitoringTask.class file.

Modifying the
databases

The exercise uses the same databases (which you can find it in training/databases
subdirectory) as all the other exercises do, and therefore the same partition train_01.

You have to modify the train_01.data.xml and train_01.sw.data.xml databases from
training/databases subdirectory, in order to start the event sampler application by DSA
Supervisor. If you have already installed the Online Software release and configured all the
environment variables you need, you have to copy first these two databases in a safe place,
just in case. Perform the following steps:

• Use the oks_data_editor. To specify the database file to be modified,
select this file and use the “Set Active” option. Define first in the
46 Online Software Tutorial

Event Monitoring
train_01.sw.data.xml database a new object of the class Binary
(named My_monitoring_sampler for example), having as
“BinaryName” atribute
${MY_PATH}/monitoring/cpp/My_monitoring_sampler and the
relationship BelongsTo set to MyRepository@SW_Repository. In
MyRepository@SW_Repository object add the binary you just
created to the relationship SW_Objects.

• Using the oks_data_editor, define in the same database a new object
of the Application class calling it the My_monitoring-sampler for
example. It must have relationship “Program”with the respective
instance of the My_monitoring_sampler object of the Binary class;

• Define also the following attributes of the Application object:

1.“Object ID” - My_monitoring-sampler for example,

2.“Parameters” - the command line parameters for the event
sampler: “-p train_01 -t crate -n RODCrate01 -D 100000 -F
${MY_PATH}/monitoring/data/EventFragment.data” (that
means your application will simulate event sampling for the
crate RODCrate01),

3.“StartAt” - should be Boot,

4.“StopAt” - should be Shutdown,

5.“InitTimeout” (which should be 0),

6.“IfDies”(should be Error),

7.“IfFailed” (should be Error).

• Select the Application class object which you have just created for
the Monitoring sampler and define it as an “Application”
relationship of the Segment RODCrate1. (In graphical mode you
select the Application class object with the right mouse button and
select "Select ..." on the menu which pops up, right click on the
segment and select "Link with ..." on the menu, then select the
option "Append to relationship ’Applications’"). This will link the
application to the Segment RODCrate1, and means that it will be
run when the partition is started. Partition train_01 has through
relationship “Segments” the link to RODCrate1 segment.

Testing the
monitoring

exercise

You can check now the event sampler and monitoring task are working.

Open a window and if you have already set up the Online Software release and configured
all the environment variables you need, proceed the same as you did for testing the
controller exercise: Boot, Initialize, Config and Start the train_01 partition. If everything is
OK you should be able to check the functionality of the controller as it is mentioned in the
controller exercise. Besides, in the PMG panel of the IGUI, when you select the PMG agent
you should see your event sampler in the panel as a running process, after executing “Boot”
command.

When the partition is in the Running state, select the "ED" button at the top of the IGUI
window. In the Event Dump select in the tree from the left hand window the partition
“train_01”, our detector and the crate(“Detector_01/crate: RODCrate01”). Then use the
"Get (Next) Event" button. You will see the event dump of one event in the window. On the
left hand side of the event window, the event is broken down into a tree structure of
subdetectors, ROCs, ROBs, and RODs. On the right hand side you can see the raw data of
Online Software Tutorial 47

Event Monitoring
the event. In the Monitor panel of the IGUI you will see the statistics for the event sampler,
which proves it has sampled one event and passed it on to the event dump.

Open another window, setup the Online Software release and configure all the environment
variables you need using .training.sh script, check the environment variable CLASSPATH
includes the path for the ${TDAQ_INST_PATH}/share/lib/ipc.jar and for the
${TDAQ_INST_PATH}/share/lib/emon.jar, and add them if necessary

>export
CLASSPATH=${TDAQ_INST_PATH}/share/lib/ipc.jar:${TDAQ_INST_PATH}/share/l
ib/emon.jar:${CLASSPATH}

Start your monitoring task application using the command:

>java -Dtdaq.ipc.init.ref=$TDAQ_IPC_INIT_REF MonitoringTask train_01
crate RODCrate01

You should see the 100 events printed out.
48 Online Software Tutorial

Chapter 6
Online Histogramming

This part of the exercise explains how to use the Online Histogramming subsystem. You
will learn how to write a histogram provider and a histogram display using C++.

The Online
Histogramming

subsystem

The Online Histogramming (later refered to as OH) subsystem is one of the components of
the ATLAS Online Software. The OH is a framework for histogram transportation in the
distributed environment. It is responsible for the communication between two types of user
applications: Histogram Providers (later refered to as HP) and User Histogram Task (later
refered to as UHT).

Histogram
Provider

A Histogram Provider is an application which may use one of the histogram filling
frameworks like ROOT (An Object-Oriented Data Analysis Framework), AIDA (Abstract
Interface for Data Analysis), HTL (histogramming Template Library), or any other means
of building histograms. The HP Interface also supports export of histograms to the OH from
a user defined format.

HP could be a user monitoring or analysis task, or a task providing histograms. When the
histogram is ready the HP can make it publicly available by publishing it in the Online
Histogramming system. The OH assigns a unique identifier to this histogram.

Illustration 6.1 Communication between Histogram Providers and User Histogram Task

UHT HP

Select/Request

Transport

JAS,
ROOT,
. . .

AIDA,
HTL,
 . . .

User defined format

ROOT
Online Software Tutorial 49

Online Histogramming
User
Histogramming

Tasks

A User Histogramming Task can access any histogram in the Online Histgramming system
using an unique identifier. It is possible to enumerate all the histograms available in the OH
system.

OH Interfaces Histogram Provider - sends histograms to the OH assigning a name to it;

Histogram Receiver - gets an histogram by name from the OH;

Histogram Subscriber - is notified when an histogram appears in the OH;

Histogram Iterator - enumerates all the histograms in the OH;

Server Iterator - enumerates all the existing OH servers;

Provider Iterator - enumerates all the active Histogram Providers.

Online
Histogramming

Web Page

The Online Histogramming Web Page contains references to the Requirements, User’s and
Developer’s guide documents:

http://atlas-onlsw.web.cern.ch/Atlas-onlsw/oh/oh.htm

OH examples OH examples show how to use the OH. In the training histogramming directory we have
two examples:

• raw_provider - shows how to write a histogram provider that exports histograms
represented by arrays of some fundamental data type to the OH

• root_display - shows how to implement an application that imports histograms from
the OH.

Accessing the
source code

The source code of the OH examples is held in the histogramming directory. All necessary
files are in two subdirectories:

Illustration 6.2 Diagram of the Online Histogramming subsystem

Online Histogramming

User Histogramming
Tasks

Histogram
Provider

Histogram
Distribution

UHT
Interface

HP
Interface

Trigger/DAQ
<<system>>
50 Online Software Tutorial

Online Histogramming
raw_provider/

 raw_provider/

raw_provider.cxx - a RAW provider example

Makefile - makefile to compile and link the example
provider

root_display/

root_display.cxx - a simple utility which display
histograms published in the OH using the ROOT framework

Makefile - makefile to compile and link the example
display

raw_provider To view and modify the raw_provider’s source code, open the raw_provider.cxx with your
favourite text editor (e.g. nedit). This is shown on illustration 6.3.

We use a template class which provides the functionality to export histograms represented
by arrays of some fundamental data type to the OH

template<class TContent, class TError, class TAxis, class TMap =
OHRawProviderDM> class OHRawProvider< TContent, TError, TAxis,
TMap >

The meaning of the template parameters are as follows:

• TContent: The data type used by user to represent bin contents (heights).

• TError: The data type used by user to represent bin errors.

• TAxis: The data type used by user to represent axis partitions.

• TMap: Governs how the user bins are accessed
Online Software Tutorial 51

Online Histogramming
To publish a sample 1D histogram we use the publish method ofOHRawProvider template class:

publish(const string & name,// Name describing the histogram

const string & title,// The histogram title

const string & label,// X Axis label

const OHAxis<TA> & axis,// A reference to the axis partition
(bincount + 1 //values)

const TC * contents,// A pointer to the position where the bin
//contents (heights) are located

const TE * errors,// A pointer to the position where the bin

///
 // Create an OHRawProvider and publish some sample histograms //
 ///

 IPCPartition p(partition_name);
 // Here we choose the source format of the histogram data with
 // the template arguments. Lets pretend we have 16-bit bin heights
 // with 8-bit errors and floating point axes.

 OHRawProvider<> * raw;
 try {
 raw = new OHRawProvider<>(p, (const char*)server_name, (const char*)provider_name);
 }
 catch(daq::oh::Exception & ex) {
 ers::fatal(ex);
 }
 // A sample annotation which stores the origin of the histograms
 std::vector<std::pair<std::string,std::string> > annotations;
 annotations.push_back(std::make_pair("Source", "OH RAW Provider example application"));

 // Sample data, this should be retrieved from somewhere in a real app
 short contents[11] = { 100,20,3,40,5,10,100,200,300,400,500};
 char errors[11] = { 1,2,3,1,1,4,1,1,4,1,1};
 float axis[11] = { 1,2,4,8,10,16,18,20,34,35,37};
 // Publish a sample 1D histogram with variable width bins, errors,
 // underflow and overflow
 std::string name1 = (const char*)histogram_name;
 name1 += "1D";
 raw -> publish(name1,
 "RAW Histogram 1D",
 OHMakeAxis("X Axis", 7, axis),
 contents,
 errors,
 true,
 false,
 annotations);
 // Insert your code to publish a sample 2D histogram
 // with variable with bins and errors here:
 std::string name2 = (const char*)histogram_name;
 name2 += "2D";
 raw -> publish(name2,
 "RAW Histogram 2D",
 OHMakeAxis("X Axis", 3, axis),
 OHMakeAxis("Y Axis", 3, axis),
 contents,
 errors,
 false,
 false,
 annotations);
 }

Illustration 6.3 Create an OHRawProvider and publish histograms
52 Online Software Tutorial

Online Histogramming
//errors are located or 0 if no errors

bool hasOverflowAndUnderflow,// Overflow and Underflow or not

bool keep_history,// keep history or not

const vector< pair<string, string> > & annotations,// Labels
and values for any annotations //that should
be attached to the histogram

To publish a sample 2D histogram the publish method of OHRawProvider template class should
be used:

publish(const string & name,// Name describing the histogram

const string & title,// The histogram title

const OHAxis<TA> & xaxis,// A reference to the x axis
partition (xcount + 1 //values)

const OHAxis<TA> & yaxis,// A reference to the yaxis partition
(xcount + 1 //values)

const TC * contents,// A pointer to the position where the bin
//contents (heights)are located

const TE * errors,// A pointer to the position where the bin
//errors are located or 0 if no errors

bool hasOverflowAndUnderflow,// Overflow and Underflow or not

bool keep_history,// keep history or not

const vector< pair<string, string> > & annotations,// Labels
and values for any annotations //that should
be attached to the histogram

• Modify the source code to publish 2D sample histogram.

How to build the
raw_provider

You should be in the raw_provider subdirectory. You can now build that provider using given
Makefiles:

> make # compile and link the raw_provider

root_display To view and modify root_display’s source code, open the root_display.cxx with your favourite
text editor (e.g. nedit). It is shown on illustration 6.4.

• Modify the source code to display histograms published in the OH.

Fill the blank space in the program code in the following way:

• The first thing that should be done, is to create a new OHIterator with name
“it”. The constructor takes parameters as shown below :

OHIterator::OHIterator (IPCPartition & p,

const string & server,

const string & provider = ".*",

const string & histoname = ".*",

)

Parameters:

 p - a valid IPCPartition
Online Software Tutorial 53

Online Histogramming
 server - name of a valid OH server

 provider - optional name of histogram provider, should only contain [a-z], [A-Z], [0-9],
’_’ and optional wildcars according to the egrep- style of regular expressions
(see manual pages for egrep comand “ > man egrep”)

 histoname - optional name of histogram, should only contain [a-z], [A-Z], [0-9], ’_’ and
optional wildcars according to the egrep- style of regular expressions (see
manual pages for egrep comand “ > man egrep”)

The iterator is a part of the mechanism that allows access to all histograms matching a given
criteria (i. e. server name, provider name etc.)

The Iterator should be created with the following data: the partition, server name, provider name
and histogram name.

• As a next step check for the success of iterator creation .

• Modify the source code by adding a loop over the histograms in the iterator.
For each histogram display: name, provider and show histograms using
retrieve() method.

Retrieve current histogram.

Parameters:

receiver - should be a user defined histogram receiver object derived from one of
the OH receiver classes - in our example we use MyReceiver class for that:
class MyReceiver : public OHRootReceiver. The constructor is MyReceiver :
(bool is_draw) : draw_(is_draw) { ; }

Returns: true if the histogam was successfully received by the user, false if a
communication error or other OH internal error occurs .

bool OHIterator::operator++ ()

Advance the iterator one position.

Returns: true if new position is valid, otherwise false

Use the operator++ to get the next histograms.

If positioned at end false is returned by this operator.

 string OHIterator::name () const

Retrieve name of the current histogram.

Returns: the name of the histogram on the current position or "" if the current
position is undefined.

string OHIterator::provider() const

Retrieve name of provider who published the current histogram.

Returns: the name of the provider who published the histogram on the current
position or "" if the current position is undefined.

• Print the success/failure info of each display operation.
54 Online Software Tutorial

Online Histogramming
The number of histograms in the iterator should be stored in the “count” variable. This
variable is used later to recognise a situation when the iterator contains no histograms.

How to build the
root_display

Verify the ROOTSYS variable is defined in your environment. In case it is not, for slc4 do:

> export
ROOTSYS=/afs/cern.ch/sw/lcg/external/root/5.18.00f/slc4_
ia32_gcc34/root

root_disply.cxx (fragments)

Illustration 6.4 Create an OHIterator object and retrieve all histogram

 //
 // Create an OHIterator object and retreive all histograms
 // with the specified characteristics from the specified server
 //
 MyReceiver receiver(graphics);
 IPCPartition p(partition_name);

 //insert your code to create a OHIterator here:
 OHIterator * it;
 try
 {
it = new OHIterator(p,
 (const char*)server_name,
 (const char*)provider_name,
 (const char*)histogram_name);
 }
 catch(daq::oh::Exception & ex)
 {
ers::fatal(ex);
return 1;
 }
 long count = 0;
 //insert your code that displays basic information about
//histograms in the OHIterator here:
 while ((*it)++) {
 std::cout << "Retreiving histogram " << it->name() << " created by " <<
 it->provider() << " at " << it->time().c_str() << "... " << std::endl;
 it->retrieve(receiver);
 count++;
 }
 delete it;
 if (count > 0)
 {
 std::cout << "No more histograms available..." << std::endl;
 }
 else
 {
 std::cout << "No histograms found..." << std::endl;
 }
 if (count > 0 && graphics)
 {
 std::cout << "Entering ROOT message loop..." << std::endl
 << "Click 'Quit ROOT' on the file menu to quit"
 << std::endl;
 theApp.Run();
 }
 }
Online Software Tutorial 55

Online Histogramming
You should be in root_display subdirectory. You can now build the root_display using the
Makefile provided:

> make # compile and link the root_display

Testing the
raw_provider and

root_display

When your raw_provider and root_display compile and link correctly you can publish
histograms. The following steps must be done:

• start anIPC server for "initial" partition:

> ipc_server &

• start anIPC partition with your partition name (e. g. mypartition):

> ipc_server -p partition_name &

• start an IS (OH) server on your partition with your server_name (e. g.
myserver):

> is_server -p partition_name -n server_name &

Currently the OH server is equivalent to the IS server

• Change directory to the raw_provider subdirectory. You can now publish
your 1D and 2D histograms on your IS server using raw_provider:

> ./raw_provider -p partition_name -s server_name -n
provider_name -h histogram_name

(e. g. raw_provider -p myparition -s myserver -n myprovider -h myhisto)

• Add $ROOTSYS/lib path to the LD_LIBRARY_PATH environment
variable

> export
LD_LIBRARY_PATH=${ROOTSYS}/lib:${LD_LIBRARY_PATH}

• Change directory to the root_display subdirectory. With root_display you
can now display your histograms published in the OH (IS) server using the
ROOT framework:

to display all histograms on a given server (e. g. myserver) in a given partition (e.
g. myparition) use:

> ./root_display -p partition_name -s server_name

to display all histograms on a given server (e. g. myserver) in a given partition (e.
g. myparition) which have been published by a specified provider named (e. g.
myprovider) use:

> ./root_display -p partition_name -s server_name -n
provider_name

to display all histograms on a given server (e. g. myserver) in a given partition (e.
g. mypartition) which have been published by a specified provider named (e. g.
myprovider) with histogram type name (e. g. myhisto1D or myhisto2D) use:

> ./root_display -p partition_name -s server_name -n
provider_name -h histogram_name

to display histograms in graphics mode you must add - g options e. g. :

> ./root_display -p partition_name -s server_name -n
provider_name -h histogram_name -g
56 Online Software Tutorial

Online Histogramming
where histogram_name is myhisto1D or myhisto2D.

The pictures below present the results of the commands presented above.

bash: pre-01-02-00>root_display -p train_01 -s myserver -n myprovider
-h myhisto1D
Retreiving histogram myhisto1D created by myprovider at 10/5/05
15:13:55...
TH1.Print Name = myhisto1D, Entries= 9, Total sum= 378
 fSumw[0]=100, x=-0.357143, error=1
 fSumw[1]=20, x=1.5, error=2
 fSumw[2]=3, x=3, error=3
 fSumw[3]=40, x=6, error=1
 fSumw[4]=5, x=9, error=1
 fSumw[5]=10, x=13, error=4
 fSumw[6]=100, x=17, error=1
 fSumw[7]=200, x=19, error=1
 fSumw[8]=300, x=21.3571, error=4
No more histograms available...
bash: pre-01-02-00>
...
bash: pre-01-02-00>root_display -p train_01 -s myserver -n myprovider
-h myhisto2D
Retreiving histogram myhisto2D created by myprovider at 10/5/05
15:13:55...
TH1.Print Name = myhisto2D, Entries= 25, Total sum= 778
 fSumw[0][0]=0, x=-0.166667, y=-0.166667, error=0
 fSumw[1][0]=0, x=1.5, y=-0.166667, error=0
 fSumw[2][0]=0, x=3, y=-0.166667, error=0
 fSumw[3][0]=0, x=6, y=-0.166667, error=0
 fSumw[4][0]=0, x=9.16667, y=-0.166667, error=0
 fSumw[0][1]=0, x=-0.166667, y=1.5, error=0
 fSumw[1][1]=100, x=1.5, y=1.5, error=1
 fSumw[2][1]=20, x=3, y=1.5, error=2
 fSumw[3][1]=3, x=6, y=1.5, error=3
 fSumw[4][1]=0, x=9.16667, y=1.5, error=0
 fSumw[0][2]=0, x=-0.166667, y=3, error=0
 fSumw[1][2]=40, x=1.5, y=3, error=1
 fSumw[2][2]=5, x=3, y=3, error=1
 fSumw[3][2]=10, x=6, y=3, error=4
 fSumw[4][2]=0, x=9.16667, y=3, error=0
 fSumw[0][3]=0, x=-0.166667, y=6, error=0
 fSumw[1][3]=100, x=1.5, y=6, error=1
 fSumw[2][3]=200, x=3, y=6, error=1
 fSumw[3][3]=300, x=6, y=6, error=4
 fSumw[4][3]=0, x=9.16667, y=6, error=0
 fSumw[0][4]=0, x=-0.166667, y=9.16667, error=0
 fSumw[1][4]=0, x=1.5, y=9.16667, error=0
 fSumw[2][4]=0, x=3, y=9.16667, error=0
 fSumw[3][4]=0, x=6, y=9.16667, error=0
 fSumw[4][4]=0, x=9.16667, y=9.16667, error=0
No more histograms available...
bash: pre-01-02-00>

Illustration 6.5 results of root_display usage
Online Software Tutorial 57

Online Histogramming
Illustration 6.6 results of graphics mode root_disply usage

58 Online Software Tutorial

Chapter 7
Resource Manager

This chapter of the exercises is dedicated to the usage of the Resource Manager. You will
learn how to create new resources and how to use these resources by means of PMG.

The Resource
Manager

On large machines such as for example the ATLAS detector there are a lot of resources such
as controllers, data-taking machines, graphical user interfaces and so forth which are useful
for many purposes. It might happen quite often that more people or applications want to use
a special device than this device can handle. (For example the controlling application of a
specific part of a detector. Two people trying that at the same time might cause problems.)
So the available resources have to be organized in such a way that the systems can work
without any problems.

The Resource Manager is created for this task and allows an easy handling of various
resources.

How does the
Resource

Manager work?

The Resource Manager (see Illustration 7.1) is divided into a client and a server part. The
server covers all the necessary classes concerning the resource management. The dynamic
database which handles resources and their various states is part of it and hidden in an
internal class used by the Resource Manager Server.

The client class allows applications to ask for resources, to handle them and to free them
again.

Illustration 7.1 The dialog for building a Software Resource
Online Software Tutorial 59

Resource Manager
Shared and exclusive resources which have to be set up in the configuration databases are
loaded into the dynamic database. Once this is done applications can use the Resource
Manager Library to ask for resources. If they are granted the application gets back a so
called token which is connected to the given resources and the application can use these
tokens to communicate with and control the allocated resources. When the resource is not
needed anymore the application can (and should of course) free the resource for the use of
others again.

How many tokens can be used at once for a specific resource depends on the resource itself.

Applications may also load and unload partition resources into or from the dynamic
database and ask for information about different tokens and resource states.

What types of RM
resources exist?

RM works with three types of resources: RM_HW_Resources, RM_SW_Resources and
RM_Computer_resources.

• RM_Computer_Resource

This type of resource has now 5 attributes: Name, MaxCopyPerPartition, MaxCopyTotal,
Memory and CPU. Two of these attributes (MaxCopyPerPartition and MaxCopyTotal) now are
not used and therefore in the future they will be removed. For this type of resource, when asking
for resource, the RM checks that Memory and CPU attributes values are not larger than those
defined for the computer where the application should be started on. If the computer has already
any working application that requires the given kind of resource, then the current dynamic
parameter values of a computer are calculated by a simple subtraction from the initial parameter
values of the computer (Memory, CPU) of the same type of the resource parameters values. For
example, for memory: ComputerAvailableMemory=ComputerAvailableMemory -
ResourceMemory.

• RM_SW_Resource

This type of resource has two important attributes: MaxCopyPerPartition and MaxCopyTotal.
Besides, has as attributes Name and HardwareClass. The attribute MaxCopyPerPartition sets
how many given resource instances can be used in one partition in the same time, the
MaxCopyTotal attribute sets how many resource instances can be used in total scope (for all
partitions). For a given resource does not matter on which computer application is started.

• RM_HW_Resource

This type of resource has the same two important attributes, MaxCopyPerPartition and
MaxCopyTotal, besides the Name attribute. For this kind of resource, the values of these
attributes show how many applications can be started on the same computer.

Directory
structure for the

RM exercise

This exercise uses the same general databases for partition, they are in the
${MY_PATH}/databases directory. Before you start this exercise save your old databases
in a safe place, you will have to perform a lot of actions on existing databases.

The specific subdirectories and files you will use for this exercise are under the
${MY_PATH}/resources directory. In the initial/databases/ subdirectory you have two
database files: train_02_include.hw.data.xml and train_02_include.sw.data.xml which will
be included in the partition database and will be modified during this exercise.

The solution for the databases you will find in the solution/databases subdirectory, where
there are the following databases: train_01.data.xml, train_02.data.xml,
train_02_include.hw.data.xml and train_02_include.sw.data.xml.
60 Online Software Tutorial

Resource Manager
Adding
Resources to the

database

In this part of the exercise you will learn to add new RM resources to the database. The
databases we will use for the exercise, as we already said, will be the general databases
located in the ${MY_PATH}/databases directory. First go to the databases directory and
copy the specific databases located in initial/databases subdirectory to the standarad place
for the databases by using the following commands:

> cd ${MY_PATH}/databases

> cp ${MY_PATH}/resources/initial/databases/train_02_include.sw.data.xml .

> cp ${MY_PATH}/resources/initial/databases/train_02_include.hw.data.xml .

For adding resources to the databases you can use oks_data_editor program. In a window
which has all the environment set for training exercises open the main partition file by the
command line:

 > oks_data_editor $TDAQ_DB_DATA

In this part of exercise you have to do the following steps in order to provide the databases
for exercising the RM:

• Step 1. Set, using your favorite text editor, in the train_02_include.sw.data.xml file, the
name of the Computer’s object which appears in the relationship RunsOn for the three
applications (Application_comp, Application_hw and Application_sw) to your
workstation’s name, as it was already defined in the controller exercise.

• Step 2. Include the new databases files you just copied in the databases subdirectory in
the partition database train_01.data.xml. In the main panel of the oks_data_editor you
can see the table named Data Files. In this table you have to find our partition database
file, namely train_01.data.xml. Check this file has access for writing. If it is not, use
chmod u+w command to set the write permissions to this file. Then you have to
doubleclick left mouse button on this file. A new panel will show up in which you can
see Include files table. In this new table press the right button and choose menu Add
from, then choose menu working directory. In opened panel you select one of the needed
files to be included in our partition database (train_02_include.hw.data.xml and
train_02_include.sw.data.xml). The same way do include the second database file. They
should be listed now among the files in the Data Files table of the oks_data_editor.
Push the right mouse button of the mouse when pushing the train_01.data.xml file and
choose Save then exit the oks_data_editor. The database wil be saved with the newly
included files.

• Step 3. Create three new RM resources (RM_Computer_Resource,
RM_SW_Resource and RM_HW_Resource).

In the main panel of the oks_data_editor you have to choose in the menu the following
items:

Edit Software Repository

In opened panel press the button choose database file and choose file in which you will
store the resource created by you (in our case it is file train_02_include.sw.data.xml).
Then press the right button of the mouse and choose following items of the menu:

Create new RM_Resource

Type ‘id’ of a new resource and choose what kind of the RM_Resource class is required

using button RM_Computer_Resource (in our case you have to create an object of the
class RM_Computer_Resource with id attribute as computer_res1, an object of the class
RM_SW_Resource with id attribute as sw_res1 and an object of the class
Online Software Tutorial 61

Resource Manager
RM_HW_Resource having as id attribute hw_res1).

After creation of a new resource you can change its attributes. For this you have to
doubleclick the left button of the mouse on the necessary attribute. In our case the three
resources have the following attributes:

a. RM_Computer_Resource:

Name:computer_res1

MaxCopyPerPartition:1

MaxCopyTotal:1

Memory:255

CPU:900

b. RM_HW_Resource:

Name:hw_res1

MaxCopyPerPartition:1

MaxCopyTotal:1

HardwareClass:

c. RM_SW_Resource:

Name:sw_res1

MaxCopyPerPartition:1

MaxCopyTotal:2

• Step 4. Create relationships.

The resources you have created should be linked with corresponding objects of the
Binary class. To create a relationship you have to select Software Repository in the
oks_data_editor, then press the right mouse button on the resource icon and choose
Copy Reference item. Select necessary object of the Binary class and after pressing the
right button choose menu beginning with Link and select Needs. Following this
procedure you have to link the following objects: computer_res1 with Binary_comp,
sw_res1 with Binary_sw and hw_res1 with Binary_hw.

Then you have to link objects of the Application class to the object of the Segment class. To
do this you have to choose in the main panel of the oks_data_editor the Edit and then
Partition items. In Partition click the right mouse button on the Application icon and choose
Copy Reference item. Select necessary Segment object (RODCrate1) and after pressing the
right button choose menu beginning with Link and select “Applications”and Append to
relationship. This way you have to link the following applications: Application_hw,
Application_sw and Application_comp with the RODCrate1 segment. All these applications
have in the database the following main attributes:

StartAt: Boot

StopAt: Shutdown.

This means that all the three applications defined for RM exercise will be started at Boot
Run Control command and stoped at Shutdown Run Control command in the IGUI. Exit the
OKS editor saving the database files.

Working with RM Now we can see the RM behavior depends on the RM resource type.

Current release uses a PMG that does free resources in the automatic order.

For preparing to see how the RM works we need to execute some actions, such as start
ipc_server and PMG_agent, register necessary partition etc. All these actions will be
62 Online Software Tutorial

Resource Manager
executed automatically at start of the setup_daq script for training partition, train_01. We
remind that start of partition can be carried out by means of the command:

> setup_daq partition_name

in a window having all the environment variables set for the training exercises, the
partition_name beeing train_01 . The window with the Online Software infrastructure will
show up. When all the components of the infrastructure will be in the RUNNING state (if
this is not the case, push the Retry button in the window), the IGUI will show up.

At this moment the Partition is registred into the RM. You can view the registred partitions
with the command:

> rm_get_partitions_list

Handling
Computer

Resources

• Working with RM_Computer_Resource resource type

In the training database your own workstation computer will have some values of the
attributes, for example:

Memory : 256

CPU : 1000

a. First let us look at the initial values of the resource attributes. It can be made by using
the following command (partition infrastructure needs to be started using setup, as
described above), in some other window, with all the environment set for training
exercises:

> rm_get_resource_info -p partition_name

The screen will display the information concerning the granted resources in the
partition. As we see all RM_Computer_Resource are not granted.

For starting an application using this resource (in our case the application is
Application_comp) we shall push the Boot and Initialize buttons in IGUI. The resources
for the partition will be allocated by RM. Use the same command as before for
displaying information about the resource allocation status, we will get (the
pcatd73.cern.ch will be changed with your own workstation name):

b. :
RMinfo =

<RESOURCE_INFO>

<RES NAME="Computer@pcadt73.cern.ch">

<TOTAL_SCOPE>

<VALUE UNIT="MBYTE" MAX="256 " GRANTED="255 ">

<VALUE UNIT="MHZ" MAX="1000 " GRANTED="900 ">

</TOTAL_SCOPE>

<P_SCOPE>

<PARTITION NAME=”train_01”>

<VALUE UNIT="MBYTE" MAX="256 " GRANTED="255 ">

<VALUE UNIT="MHZ" MAX="1000 " GRANTED="900 ">

</P_SCOPE>

</RES >

. .

c. In order to free allocated resources by means of PMG, push the Shutdown button
command in the IGUI. Using rm_get_resource_info in the window again, we will see
that the resources are free now, the same as in paragraph a.
Online Software Tutorial 63

Resource Manager
d. Then you have to use the oks_data_editor for changing the values of the attributes of
the RM_Computer_Resource object to be higher than yours’ computer, for example:

RM_Computer_Resource:

Name: computer_res1

MaxCopyPerPartition: 1

MaxCopyTotal: 1

Memory: 512

CPU: 1800

Save the database.

e. Push Reload database button (arrow) in the IGUI, in order to take into account the
database changes, update changes in RM using the command in the window:

> rm_update_config -d oksconfig:${TDAQ_DB_DATA}

If the result of this command was successful, we should see on the screen the following
message:

“Update my partition finished”.

f. Start the Application_comp (which uses the new defined RM_Computer_Resource) by
pushing Boot, Initialize. In the MRS messages window of the IGUI you will get an
ERROR message about failing to start Application_comp because resources can not be
granted.

Acting correctly, the RM is not allowing to start application due to the fact that there is
no available resources for our application this time.

Set using oks_data_editor the attributes for the RM_Computer_Resource to the initial
values.

Handling
software and

hardware
resources

• Working with RM using RM_SW_Resource and RM_HW_Resource resource
types

To show how the RM works with this type of resources we will create one more partition,
train_02, which will have the same configuration as the old one (train_01), except the name
of the partition. To do this you have to do the following steps:

>cd ${MY_PATH}/databases

>cp train_01.data.xml train_02.data.xml

Now you have to modify the id of the object train_01of the Partition class to train_02 in the
train_02.data.xml database file you just created. To do this you can either use the
oks_data_editor, or use your favorite editor (nedit for example) opening the database and
changing to train_02 the id of the partition object which is train_01 for the moment. For this
part of the exercise you have to modify in the train_01.hw.data.xml database file the
attributes for your own computer to:

Memory: 600

CPU: 1000

a. Start the partition infrastructure for train_01 using setup_daq command in the window
where you have all the environment for the training set. Open an other window, set the
64 Online Software Tutorial

Resource Manager
environment for the training and set the environment variable TDAQ_DB_DATA to the
new database by the following commands:

> unset TDAQ_DB_DATA

> export TDAQ_DB_DATA=${MY_PATH}/databases/train_02.data.xml

b. Then start in this new window the infrastructure for partition train_02 with the same
kind of command as you used for train_01 partition.

Let us have a look now at the values of the resource parameters (use the same command
as before to get information about the resources). The resources are free now.

c. We start now applications in partition train_01 using Boot and Initialize commands of
the IGUI. The resources are allocated for this first partition, we don’t get any error
message in the IGUI.

d. We try to start now the same applications in partition train_02 by pushing Boot and
Initialize in the IGUI for partition train_02. For Application_sw we don’t get any error
message (MaxCopyPerPartition=1, MaxCopyTotal=2), but for Application_hw
(MaxCopyPerPartition=1, MaxCopyTotal=1) we get an error message in the IGUI
becauese the resources can not be allocated.

e. When trying to boot partitition train_02 after pushing Shutdown in the partition
train_01, the resource for Application_hw is already free and can be allocated. We don’t
get any error message.
Online Software Tutorial 65

Resource Manager
66 Online Software Tutorial

	Introduction
	What is this document about?
	What is the Online Software?
	Crate controller
	GUI panel
	Event Monitoring
	Online Histogramming
	Test development and diagnostics
	Resource Manager
	Installation of Online SW release
	Installation of Training package
	Training Documentation
	Source Code
	Solutions
	Example configuration
	Setting up the example database
	More examples and documentation
	Some good advice

	Controller
	The Run Control system
	Controller
	Run Control Applications
	Exercise 1: Controlled Application example
	Publishing IS information
	Directory structure for controlled application exercise
	.Accessing the source code
	Prepare the databases
	Modify the source code
	How to build the controlled application
	Testing the controlled application example
	Checking IS information
	More exercising
	Exercise 2: controller example
	RC::UserRoutines class
	Directory structure for controller exercise
	Accessing the source code
	Modify the database
	Modify the source code
	How to build the controller
	Detecting faults
	How to test the controller
	Special note

	GUI panel
	The integrated GUI
	IGUI panel example
	RDB interface
	IS interface
	IGUI panel methods
	IguiPanel Interface
	Directory structure for panel exercise
	Accessing and modifying the source code
	Compiling and testing the panel
	Testing the panel integrated in the IGUI
	Some other good advice

	Diagnostics Test
	The Diagnostics and Verification System
	A Test
	Test Repository
	Accessing the source code
	Checking IS information
	Retrieving information from IS
	Build the test
	Test Repository Browsing (Modification)
	Run DVS
	Load and Test Configuration

	Event Monitoring
	The Event Monitoring system
	Event Sampler
	Monitoring Task
	Monitoring exercise
	Modifying the source files for event sampler
	Modifying the source files for monitoring task
	Building the event sampler
	Building the monitoring task
	Modifying the databases
	Testing the monitoring exercise

	Online Histogramming
	The Online Histogramming subsystem
	Histogram Provider
	User Histogramming Tasks
	OH Interfaces
	Online Histogramming Web Page
	OH examples
	Accessing the source code
	raw_provider
	How to build the raw_provider
	root_display
	How to build the root_display
	Testing the raw_provider and root_display

	Resource Manager
	The Resource Manager
	How does the Resource Manager work?
	What types of RM resources exist?
	Directory structure for the RM exercise
	Adding Resources to the database
	Working with RM
	Handling Computer Resources
	Handling software and hardware resources

