
User’s Guide
November 2005

Serguei Kolos

Reference: http://atddoc.cern.ch/Atlas/DaqSoft/components/is/Welcome.html
Information Service
ATLAS TDAQ

Version 1.3

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the
Information and Programming Techniques Group at CERN. Only widely available fonts
have been used, with the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the
rights of the trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of
this documentation and associated computer program reserved in all countries of the
world.

Organisations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility
for its correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which
they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

Preface

This document is the user’s guide for the Information Service (IS) component of the ATLAS TDAQ
Online Software system [1]. The Information Service is used to share information between applications
in a distributed environment. This document gives an overview of the IS, describes the functionality it is
providing, and gives instructions for how to use the C++ IS Application Program Interface (API).

The Java API is not discussed in this document, but it is very similar to the C++ one and is based on the
same principals. The full IS Java API reference manual is available as part of the Online Software release
in the <online software release directory>/share/doc/is/javadoc/is directory. This directory contains
files generated by the javadoc utility. The main entry point to the documentation is the index.html file.
The same information is also available online from the Information Service home page [2].

This document has been prepared by Serguei Kolos (Serguei.Kolos@cern.ch) and is based on the IS
implementation developed in the context of the Online Software system of the ATLAS TDAQ project [3].

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the
Information and Programming Techniques Group at CERN. Only widely available fonts
have been used, with the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the
rights of the trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of
this documentation and associated computer program reserved in all countries of the
world.

Organisations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility
for its correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which
they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

G
U

D
I

W

Outline

Preface i
Outline. iii
Contents v

Chapter 1 Introduction 1
Chapter 2 Basic functionality 5
Chapter 3 User-defined information types 13
Chapter 4 Type of IS information 19
Chapter 5 Subscribing to the IS repository 23
Chapter 6 Browsing the IS repository 29
Chapter 7 Reading information with unknown structure 33
Chapter 8 Sending and Receiving commands 37
Chapter 9 Reading information type description 41
Chapter 10 Building and running IS applications 45
Chapter 11 IS Utilities 49
Chapter 12 C++ API: Class Reference 53

Rules for the IS information declaration 97
C++ information classes based on the ISInfo 101
C++ information classes based on the ISNamedInfo . 105
Mapping between OKS and IS types 109

 Bibliography 111
Index 113
Information Service User’s Guide iii

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the
Information and Programming Techniques Group at CERN. Only widely available fonts
have been used, with the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the
rights of the trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of
this documentation and associated computer program reserved in all countries of the
world.

Organisations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility
for its correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which
they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

Contents

Outline . iii
Contents . v

Chapter 1
Introduction . 1

1.1.1 Architecture 2
1.1.2 Implementation 3

Chapter 2
Basic functionality . 5

2.2 Publishing and updating information 6
2.2.1 Creating information in the IS 6
2.2.2 Replace the last information value 7
2.2.3 Update information using history mode 8

2.3 Reading simple information 8
2.3.1 Getting the last value of the information 8
2.3.2 Getting information history 9

Chapter 3
User-defined information types 13

3.2 Defining new information type 14
3.3 Generating programming language declarations 15
3.4 Two types of the IS information classes 16
3.5 Using custom information types 16

3.5.1 Using classes based on the ISInfo 16
3.5.2 Using classes based on the ISNamedInfo 17

Chapter 4
Type of IS information . 19

4.2 Getting information object type 20
4.3 Reading Object types from IS repository 21
4.4 Information type operations 22

Chapter 5
Subscribing to the IS repository 23

5.2 Subscribe for a single information 24
5.3 Subscribe using criteria 25

5.3.1 How to define criteria 25
5.3.2 How to subscribe using criteria 26

5.4 Subscription modes 27

Chapter 6
Browsing the IS repository . 29

6.2 Using the IS server iterator 30
Document Title v

Contents
6.3 Using the IS information iterator 31
6.4 Using extended criteria for information iterator 31

Chapter 7
Reading information with unknown structure 33

7.2 Using ISInfoAny class to print out information. 34
7.3 Parsing content of the ISInfoAny object 35

Chapter 8
Sending and Receiving commands 37

8.2 Implementing IS command listener 38
8.3 Sending commands to information providers 39

Chapter 9
Reading information type description 41

9.2 Setting up the IS meta-information repository 42
9.3 Reading the IS type description 43
9.4 Reading all available IS types descriptions 44

Chapter 10
Building and running IS applications 45

10.1.1 Information Provider example application 46
10.1.2 IS reader example application 46
10.1.3 Makefiles . 46
10.1.4 Compiling examples 47

10.2 Running IS examples 47
10.3 Troubleshooting Tips 48

10.3.1 IS server errors 48
10.3.2 Information Provider errors 48
10.3.3 Information reader errors 48

Chapter 11
IS Utilities . 49

11.1.1 Information listing application (is_ls) 50
11.1.2 Commander application (is_cmd) 50
11.1.3 Information remover application (is_rm) 50

11.2 Graphical utility . . 51

Chapter 12
C++ API: Class Reference . . 53

12.1 ISCallbackEvent . . 54
12.2 ISCallbackInfo . . 55
12.3 ISCommandListener 57
12.4 ISCriteria . . 58
12.5 ISInfo . . 60
12.6 ISInfoAny . 63
12.7 ISInfoDictionary . . 65
12.8 ISInfoDocument . . 68
12.9 ISInfoDocument::Attribute 70

12.10 ISInfoDocument::Iterator 72
12.11 ISInfoIterator . 74
12.12 ISInfoProvider . . 77
12.13 ISInfoReceiver . . 79
12.14 ISInfoT<T> . . 82
12.15 ISNamedInfo . 84
vi Document Title

Contents
12.16 ISServerIterator . 88
12.17 ISType . 90
12.18 ISistream . 93
12.19 ISostream . 95

Rules for the IS information declaration 97
A.1.1 Example . 98
A.1.2 Explanation 98

A.2 IS Information in Java 98
A.2.1 Example . 98
A.2.2 Explanation 99

C++ information classes based on the ISInfo 101
B.1 Person class . 101
B.2 Employee class . 102

C++ information classes based on the ISNamedInfo 105
C.1 PersonNamed class 105
C.2 EmployeeNamed class 106

Mapping between OKS and IS types 109

Bibliography . 111

Index . 113
Document Title vii

Contents
viii Document Title

Chapter 1
Introduction

This chapter gives a general overview of the Information Service (IS) describing
it’s purpose, structure and elements. It should be read by anyone who wants a
general introduction to the component and by developers before they proceed to
the later chapters.

1.1 Overview of the Information Service2
Information Service User’s Gude 1

Introduction
1.1 Overview of the Information Service

The Information Service (IS) is used to share information between applications in a
distributed environment. The IS satisfies the requirements outlined in the user
requirements document [4].

1.1.1 Architecture

A central part of the Information Service is the IS repository which holds the
information provided by applications. This repository supports three main types of
interactions which are shown on Figure 1.1.

The Information Provider can create information in the IS repository and also
update or delete an already existing information. The Information Reader can get
the value of the information from the repository by sending request to it. The
Information Subscriber can subscribe for the repository to be notified about the
changes. Each time the Provider creates, updates or deletes information the
Subscriber will be informed. Obviously, an application can use any combination of
interactions described above.

In addition to the interactions with the IS repository any application is able to send
commands to any of the running IS Information Providers. This can be done if the
IS repository contains at list one information item, which was published by the
target Information Provider.

Do not do ...

The IS commands facility is not an alternative for the general control commands. It
must be used only to control the IS information flow. For example an application
may ask a particular information provider to increase the frequency of information
updates or to republish a particular information.

Figure 1.1 IS architecture (UML Collaboration diagram)

Information
Provider

Information
Subscriber

Information
ReaderInformation

Repository
insert,
update,
remove

subscribenotify

findValue

sendCommand
2 Information Service User’s Gude

Introduction
1.1.2 Implementation

IS repository In the current IS realization the IS repository is implemented by a number of
processes, called IS servers. Each server has unique id which user application can
use to access this particular server.

API The IS Application Program Interface (API) exists in C++ in a form of library and in
Java in a form of JAR file.

Information
model

The IS uses three level object model* for the information definition. It provides
access as to an information objects as to the classes that describe those objects (see
Figure 1.2).

The IS meta-type level describes structures of an IS information types in XML
format. This description includes definition of the type’ attributes, including name,
type and optional text explanation for each attribute. User can define his own
information types using procedure described later in this document.

The second level contains programming language declarations which are
automatically generated from the IS meta-types. The IS information types
described in XML are mapped to a classes in C++ and Java programming
languages.

The third level contains an information itself in a form of the instances of the
programming language classes from the second level of the model. These instances
can be used to put the information to the IS repository or to get the information
from it.

Information
naming

convention

Each information object has a unique name in the IS repository. In the current
implementation, name is a character string which must have the following format:

* Three-level object system has objects, classes and meta-classes.

Figure 1.2 IS 3 level object model

IS information
Instances of the programming

language classes

IS Type
Programming language classes

IS Meta-Type
Type description in XML
Information Service User’s Gude 3

Introduction
Remember

InformationName::=ServerName<.>ObjectName

The ServerName must be a valid name of one of the running IS server applications.
The information object will be stored in the part of the IS repository which is
implemented by this IS server. The ObjectName must be unique for each
information object in this IS server.

Communication
Technology

The current IS implementation is based on the Common Object Request Broker
Architecture (CORBA)[5] standard. The C++ implementation is done on top of the
omniORB broker. The omniORB [6] is the fully CORBA compliant broker, which is
a successor of the Inter Language Unification (ILU) broker[7], which has been used
for several years by the Online Software group. For Java implementation the
JacORB broker[8] is being used for the moment.

Nevertheless, both C++ and Java IS APIs are independent of the underlying
communication technology. This allows to change the communication mechanism
in future (if it becomes necessary) without affecting the IS user applications.
4 Information Service User’s Gude

Chapter 2
Basic functionality

This chapter describes how to use the basic IS facilities in C++ programs: publish,
update and retrieve information of one of the basic C++ types.

2.1 Predefined information types 6

2.2 Publishing and updating information 6

2.3 Reading simple information8
Information Service User’s Gude 5

Basic functionality
2.1 Predefined information types

The IS C++ API defines information classes for all C++ built-in types: ISInfoBool,
ISInfoChar, ISInfoShort, ISInfoInt, ISInfoLong, ISInfoUnsignedChar,
ISInfoUnsignedShort, ISInfoUnsignedInt, ISInfoUnsignedLong, ISInfoFloat,
ISInfoDouble, ISInfoString. All these classes have the same set of operators and
methods. For the detailed description of this classes see Chapter 12.14.

2.2 Publishing and updating information

As it was explained in the introduction an application can add a new information to
the IS repository, update an existing information and remove it if necessary. The
update function has two working modes:

1. Default mode: in this mode the old value of the updated information is
removed from the IS and is lost forever.

2. History mode: in this mode the old information value is stored in the IS and can
be retrieved later.

The number of history values, which can be stored by the IS repository for a single
information object is limited by the dedicated parameter of the IS server
application, which implements the corresponding part of the IS repository. This
limit is the same for all the information items, which are stored on that IS server. In
the current implementation this number is defined at the server start up time and
can not be changed dynamically. When the number of history values for any
information object exceeds the limit the IS server removes the oldest value from the
history list and destroy it.

2.2.1 Creating information in the IS

Listing 2.1 shows how an application can make several instances of the simple
information available for any other interesting application via IS, i.e. publish
information.

First the user program has to include the is/infoT.h header file. This file contains
declarations for the simple IS information types and also includes internally the
main IS header file is/info.h which declares the ISInfoDictionary class which
provides the main interface for the information providers. Then the program
creates an instance of the IPCPartition class. This instance represents the partition
in which the Information Service will be used. For more information about
IPCPartition class see [9]. The ISInfoDictionary class constructor takes this
6 Information Service User’s Gude

Publishing and updating information
partition object as parameter. Then, lines 22-23 show how the ISInfoDictionary
object can be used to insert new information to the IS.

When the published information is changed, it is necessary to inform the IS about
those changes. Next chapters explain how one can do this. This can be done in two
ways: one can instruct the IS repository to keep the previous value of the updated
information or to drop it. The next two chapters explain how this can be done.

2.2.2 Replace the last information value

The update method of the ISInfoDictionary class tells to the IS that already
existing information, identified by the first parameter of the update call, has been
changed. If there is no information with this name in the IS the update returns
ISInfo::NotFound status and does not change the content of the information
repository.

Listing 2.1 Publishing simple information

1: #include <is/infoT.h>
2: #include <is/infodictionary.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av){
6: // Initialise communication library
7: IPCCore::init(ac, av);
8:
9: // Create the instance of partition

10: IPCPartition partition(“MyPartition“);
11:
12: // Create the IS dictionary in the specific partitition
13: ISInfoDictionary dict(partitition);
14:
15: // Create the instances of the information
16: // that will be published, and initialise them
17: ISInfoInt voltage(220);
18: ISInfoFloat temperature(22.3);
19:
20: // Publish information in the MyServer IS server
21: dict.insert("MyServer.DeviceVoltage", voltage);
22: dict.insert("MyServer.DeviceTemperature", temperature);
23:
24: return 0;
25: }

Listing 2.2 Updating simple information without keeping information history

1: #include <is/infoT.h>
2: #include <is/infodictionary.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av){
6: ...
7: voltage = 360;
8: temperature = 31.54;
9:

10: // Update information in the MyServer IS server
11: dict.update("MyServer.DeviceVoltage", voltage);
12: dict.update("MyServer.DeviceTemperature", temperature);
13:
14: return 0;
15: }
Information Service User’s Gude 7

Basic functionality
This example asks the IS repository to store the new information value and drop
the previous one. The previous information value will be lost forever.

2.2.3 Update information using history mode

Contrary to the example in the previous chapter the one, which is shown on
Listing 2.3. requests the IS repository to keep the old information value, which can
be retrieved later by using the technic described in the Listing 2.5.

Note the use of an additional parameter for the update function. It is set to true,
which means that the old information value has to be kept. If this parameter is
omitted then the default value, which is false, is taken and the old information
value is removed from the IS.

2.3 Reading simple information

2.3.1 Getting the last value of the information

Once an information is published any other application can read it. Listing 2.4
shows how a C++ program can get the latest information value. This program uses

Listing 2.3 Updating simple information with history

1: #include <is/infoT.h>
2: #include <is/infodictionary.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av){
6: ...
7: voltage = 360;
8: temperature = 31.54;
9:
10: // Update information in the MyServer IS server
11: dict.update("MyServer.DeviceVoltage", voltage, true);
12: dict.update("MyServer.DeviceTemperature", temperature, true);
13: return 0;
14: }
8 Information Service User’s Gude

Reading simple information
the getValue method of the ISInfoDictionary class in order to get the value of the
specific information from the IS.

2.3.2 Getting information history

Listing 2.5 shows how a C++ program can get the all information values, including
the latest value and also all or some history values This program uses the getValues

Listing 2.4 Reading last value of information

1: #include <is/infoT.h>
2: #include <is/infodictionary.h>
3: #include <ipc/core.h>
4:
5: int main (int ac, char ** av){
6: // Initialise communication library
7: IPCCore::init(ac, av);
8:
9: // Create the instance of partition

10: IPCPartition partition(“MyPartition”);
11:
12: // Create the IS dictionary the specific partitition
13: ISInfoDictionary dict(partitition);
14:
15: // Create the instances of the information that will be read
16: ISInfoInt voltage;
17: ISInfoFloat temperature;
18:
19: // Read information
20: dict.getValue("MyServer.DeviceVoltage", voltage);
21: dict.getValue("MyServer.DeviceTemperature", temperature);
22: return 0;
23: }
Information Service User’s Gude 9

Basic functionality
template method of the ISInfoDictionary class in order to get the all the value of
the specific information from the IS.

The lines 21-27 shows how to read all the history values for the
“MyServer.DeviceVoltage” and “MyServer.DeviceTemperature” information
respectively. The history values are stored in the vector, which is provided as
second argument of the getValues function. The information values in the resulting
vector are sorted by their time with the most recent value in the first element of the
vector.

Listing 2.5 Reading history of information

1: // include the IS header file
2: #include <is/infoT.h>
3: #include <is/infodictionary.h>
4: #include <ipc/core.h>
5:
6: int main (int ac, char ** av){
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:
10: // Create the instance of partition
11: IPCPartition partition(“MyPartition”);
12:
13: // Create the IS dictionary instance
14: // using the partitition object as parameter
15: ISInfoDictionary dict(partitition);
16:
17: // Create the instances of the information
18: // that will be red
19: std::vector<ISInfoInt> voltages;
20: std::vector<ISInfoFloat> temperatures;
21:
22: // Read information history
23: dict.getValues("MyServer.DeviceVoltage", voltages);
24: dict.getValues("MyServer.DeviceTemperature", temperatures);
25:
26: for (size_t i = 0; i < voltages.size(); i++)
27: std::cout << "Voltage [" << i << "] = " << voltages[i] <<

std::endl;
28:
29: for (size_t i = 0; i < voltages.size(); i++)
30: std::cout << "Temperatures [" << i << "] = " <<

temperatures[i] << std::endl;
31:
32: return 0;
33: }
10 Information Service User’s Gude

Reading simple information
The list of history values might be long and one may want to read only the last N
history values instead of reading all of them. This can be done by using the 3d
parameter of the getValues function as it is shown in Listing 2.6.

This 3d parameter has a default value set to -1, which means that all history values
have to be read. Setting this parameter to some other positive value N will result in
reading at most the N last information values. If the current history size is less than
N, then the number of elements in the vector will be equal to the current history
size.

Listing 2.6 Reading last 10 values from information history

1: // include the IS header file
2: #include <is/infoT.h>
3: #include <is/infodictionary.h>
4: #include <ipc/core.h>
5:
6: int main (int ac, char ** av){
7:
8: ...
9:

10: std::vector<ISInfoInt> voltages;
11: std::vector<ISInfoFloat> temperatures;
12:
13: // Read the last 10 history values information
14: dict.getValues("MyServer.DeviceVoltage", voltages, 10);
15: dict.getValues("MyServer.DeviceTemperature", temperatures, 10

);
16:
17: return 0;
18: }
Information Service User’s Gude 11

Basic functionality
12 Information Service User’s Gude

Chapter 3
User-defined information types

This chapter describes how to define and use custom information types with the
Information Service.

3.1 Introduction . 14

3.2 Defining new information type 14

3.3 Generating programming language declarations . . 15

3.4 Two types of the IS information classes. 16

3.5 Using custom information types 16
Information Service User’s Gude 13

User-defined information types
3.1 Introduction

The Information Service defines a number of simple IS types as it has been
explained in the previous chapter. In addition to that a software developer can
define his own types of information. A user-defined information type can be
declared in C++ and Java languages as a class containing an arbitrary number of
attributes. Each attribute cab be defined either as a single variable of one of the
basic types, supported by IS, or as an array of one of those types. For the list of the
IS supported types see Appendix D.

Although an information class can be declared manually (see Appendix A), it is
strongly recommended to use a special procedure of defining an information type
which is described in this chapter. Using this procedure offers additional benefits to
a software developer:

• developer can provide text description for his own information type as well as
for all the attributes of this type. This description will be available to all
applications at run-time via the IS API.

• developer doesn’t need to worry about compatibility of the Java and C++ class
declarations for the same information type. For a number of reasons depicted in
Appendix A this task is non-trivial.

3.2 Defining new information type

Software developer should use the OKS Schema Editor application to define a new
IS information type. This definition will be stored in a file in the XML format. For
information about the OKS Schema Editor see [10]. The OKS Schema Editor have to
be started with the following command:

> is_edit_repository.sh [[xml_file]...]

This script runs the OKS Schema Editor and loads the xml_file files into it. These
files contain your own IS types definitions. If you don’t have it yet just run the
script without parameters and create a new XML file using the OKS Schema Editor
menus. In this file you can define any number of your own IS information types.

Caution

There is one class that is always loaded by the is_edit_repository.sh script to the
OKS Schema Editor. This is the abstract Info class that must be used either as direct
or as indirect base class for any user-defined information classes.

In order to define a new IS type, using OKS Schema Editor, one has to accomplish
the following steps:

3. Create new XML file (only if it has not been yet created) and set this file as
active. Active means that all new class declarations will be stored in this file.

4. Create new class. This class must inherit either from the Info class or from
another IS class visible in the OKS Schema Editor.
14 Information Service User’s Gude

Generating programming language declarations
5. Create attributes for the new class. For each attribute one has to provide a type
and optionally a description.

6. Save you XML file and exit schema editor.

Figure 3.1 shows the OKS Schema Editor windows with the two classes: Person and
Employee. The Employee class inherits the Person and the Person in turn inherits
the abstract Info class.

3.3 Generating programming language
declarations

In order to be able to use the new IS types in C++ or Java applications it is necessary
to generate the respective programming language declarations for these types. This
can be done using the IS generator application.

In order to use the IS generator one has to specify which code has to be generated
(C++, Java or both) and optionally can provide some additional parameters, which
affect the generated files. The whole list of options with their description can be
retrieved by executing the is_generator.sh script with the ‘-h’ command line
parameter.

Figure 3.1 Person and Employee classes in the OKS Schema Editor
Information Service User’s Gude 15

User-defined information types
3.4 Two types of the IS information classes

The IS generator can produce two kinds of programming language declarations for
the IS information types: classes which inherit the ISInfo (is.Info in Java) and also
classes which inherit the ISNamedInfo (is.NamedInfo in Java). These classes are
fully compatible - information which has been published in the IS using the ISInfo
based class can be read using the ISNamedInfo based class and vice versa. The
only difference is how these classes are used by the applications. From the
programming point of view sometime it is more convenient to use one of them
sometime another.

Appendix B shows two classes produced by the IS generator for the Person and
Employee information types shown on Figure 3.1. These classes are based on the
ISInfo one. Appendix B shows classes for the same IS information types, but they
are based on the ISNamedInfo. Next section explains the difference in their usage.

3.5 Using custom information types

3.5.1 Using classes based on the ISInfo

Usage of the custom IS classes, based on the ISInfo class, is quite straightforward -
they are used exactly in the same way as the simple IS types which were explained
16 Information Service User’s Gude

Using custom information types
in the previous chapter. Listing 3.1 shows, for example, how to publish information
of the type Person (see Appendix B for the Person class declaration).

3.5.2 Using classes based on the ISNamedInfo

The ISNamedInfo class inherits the ISInfo and therefore provides the same
interface for the information declaration. But in addition to that it has a number of
public methods to work with the IS repository. A program can create an instance of
the custom information class based on the ISNamedInfo and use the methods of
the ISNamedInfo class to insert this information into the IS, to update it or to
remove from it from the IS. In another words, this class combines features provided
by the ISInfo and ISInfoDictionary classes. For example, Listing 3.2 shows how to

Listing 3.1 Publishing and updating custom information using classes based on the
ISInfo

1: // include header file generated for the Person class
2: #include <Person.h>
3: #include <is/infodictionary.h>
4: #include <ipc/core.h>
5:
6: int main(int ac, char ** av){
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:

10: // Create the instance of partition
11: IPCPartition partition(partition_name);
12:
13: // Create the IS dictionary instance
14: // using the partitition object as parameter
15: ISInfoDictionary dict(partitition);
16:
17: // Create the instance of the information
18: // that will be published, and initialise it
19: Person person;
20: person.name = “Jone”;
21: person.sex = Male;
22: person.birth_date = OWLDate(“24/09/83”);
23:
24: // Publish information
25: dict.insert("MyServer.Person1", person);
26:
27: // Update person’s information
28: person.name = “Jone Smith”;
29:
30: // Update information in the IS
31: dict.update("MyServer.Person1", person);
32:
33: return 0;
34: }
Information Service User’s Gude 17

User-defined information types
publish information of type Person using the PersonNamed class which inherits the
ISNamedInfo (see Appendix C for the PersonNamed class declaration).

The ISNamedInfo::checkin function (lines 23,36) is used here to put the new
information value to the IS repository. This function updates the information value
if the information already exists in the repository. Otherwise it inserts the new
information to the repository. This is the main difference with the usage of the
information classes, which inherit the ISInfo class.

Listing 3.2 Publishing and updating custom information using classes based on the
ISNamedInfo

1: // include header file generated for the Person class
2: #include <PersonNamed.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av)
6: {
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:
10: // Create the instance of partition
11: IPCPartition partition(partition_name);
12:
13: // Create the instance of the information
14: // that will be published, and initialise it
15: PersonNamed person(partitition, "MyServer.Person1");
16: person.name = “Jone”;
17: person.sex = Male;
18: person.birth_date = OWLDate(“24/09/83”);
19:
20: // Publish information with the name "MyServer.Person1"
21: // If information with this name already exists it will
22: // be updated
23: person.chekin();
24:
25: // Describe another person
26: person.name = “Elena”;
27: person.sex = Female;
28: person.birth_date = OWLDate(“21/07/85”);
29:
30: // Set new IS name for the information
31: person.name("MyServer.Person2");
32:
33: // Publish information with the name "MyServer.Person2"
34: // If information with this name already exists it will
35: // be updated
36: person.chekin();
37:
38: return 0;
39: }
18 Information Service User’s Gude

Chapter 4
Type of IS information

This chapter describes how to obtain and use the type of IS information objects.

4.1 Introduction . 20

4.2 Getting information object type 20

4.3 Reading Object types from IS repository 21

4.4 Information type operations 22
Information Service User’s Gude 19

Type of IS information
4.1 Introduction

Any information object in the IS has a fundamental property called Type. Object
type is represented by object of class ISType. An object, which represents an
information type, encapsulates information about the structure of the
corresponding information object allowing to perform some operations on the
objects types, like type comparison and type inheritance checking. An addition an
object type contains the unique name of that type, which is used to get access to the
type description.

4.2 Getting information object type

There are two ways of getting the type of a particular information object, static and
polymorphic. The static one can be used if the declaration of the C++ (or Java) class
for the information object is available in user’s code. In C++ language one can call
the static method of the generated information class, which is called type, to get the
type object of this information class (Listing 4.1).

In Java the type of the information object is declared as a public static final attribute
of the generated class, called type and can used as <Information Class
Name>.type.

The polymorphic type function, which is declared in the ISInfo class (is.Info in
Java) can be used to get the type of the information object when the object’s class

Listing 4.1 Getting static type of information object

1: // include header files generated for the Person and Employee
classes

2: #include <Person.h>
3: #include <Employee.h>
4: #include <ipc/core.h>
5:
6: void print_type(const ISType & type)
7: {
8: std::cout << “type is “ << type << std::endl;
9: }
10:
11: int main(int ac, char ** av)
12: {
13: print_type(Person::type());
14: print_type(Employee::type());
15: return 0;
16: }
17:
20 Information Service User’s Gude

Reading Object types from IS repository
declaration is not available or there is uncertainty about the actual type of this
object (Listing 4.2).

Of course the types which are obtained using static and polymorphic ways are
identical for the same information class.

4.3 Reading Object types from IS repository

One can also read the information type for any object published in the IS repository.
It is possible to get a type of a particular object by using the
ISInfoDictionary::getType function Listing 4.3.

Listing 4.2 Getting polymorphic type of information object

1: // include header files generated for the Person and Employee
classes

2: #include <Person.h>
3: #include <Employee.h>
4: #include <ipc/core.h>
5:
6: void print_type(const ISInfo & info)
7: {
8: std::cout << “type is “ << info.type() << std::endl;
9: }

10:
11: int main(int ac, char ** av)
12: {
13: print_type(Person());
14: print_type(Employee());
15: return 0;
16: }

Listing 4.3 Reading object type from IS repository

1: // include header file generated for the Person class
2: #include <Person.h>
3: #include <is/infodictionary.h>
4: #include <ipc/core.h>
5:
6: int main(int ac, char ** av)
7: {
8: // Initialise communication library
9: IPCCore::init(ac, av);

10:
11: // Create the instance of partition
12: IPCPartition partition(partition_name);
13:
14: // Create the IS dictionary instance
15: // using the partitition object as parameter
16: ISInfoDictionary dict(partitition);
17:
18: ISType type;
19: // Publish information
20: dict.getType("MyServer.Person1", type);
21:
22: if (Person::type() == type) {
23: std::cout << “object MyServer.Person1 has type Person“ <<

std::endl;
24: }
25: }
Information Service User’s Gude 21

Type of IS information
Alternatively one can use the ISInfoIterator::type function to get the type of the
object at the current position of the iterator (See “Browsing the IS repository” on
page 29.).

4.4 Information type operations

Table 4.1 shows all the operations which can be applied to ISType objects.

The last two operations are useful for defining criteria for information subscription
See “Subscribing to the IS repository” on page 23. and information browsing See
“Browsing the IS repository” on page 29..

Table 4.1 Type operations

ISType type1;
ISType type2;

Description

t1 == t2 returns true if types are fully identical, i.e. the type names
and type structures are the same

t1 != t2 returns false only if types are fully identical, otherwise
returns true

t1.compatibleWith(t2) returns true if types have the same structure, type names
are not compared

t1.superTypeOf(t2) returns true if t2 represents a type, which inherits from t1
or is the t1 itself

t1.subTypeOf(t2) returns true if t1 represents a type, which inherits from t2
or is the t2 itself

!t1 returns the new ISType object, which is compatible with
any type but the t1

~t1 returns the new ISType object, which is compatible with t1
as well as with any type, which is subtype of the t1
22 Information Service User’s Gude

Chapter 5
Subscribing to the IS repository

This chapter describes how to subscribe for the changes in the IS repository.

5.1 Introduction . 24

5.2 Subscribe for a single information. 24

5.3 Subscribe using criteria 25

5.4 Subscription modes 27
Information Service User’s Gude 23

Subscribing to the IS repository
5.1 Introduction

IS allows applications to subscribe for the content of the IS repository. An
application can subscribe for an individual information by providing the
information name and function which will be called when this information is
changed. It is possible to subscribe for the information which is not yet in the IS
repository. In this case the first notification will be send to the subscriber when the
information is created.

Another possibility is to subscribe for a number of informations by providing a a
special object of the type ISCriteria as subscription parameter. In this case the
subscribed application will receive notification for all the information objects
whose names satisfy this criteria. The following sections shows how to do such
subscriptions using the C++ IS API.

5.2 Subscribe for a single information

Listing 5.1 shows how to an application can subscribe for an individual information
in the IS repository.

Listing 5.1 Subscribe for a single information

1: // include main IS header file
2: #include <is/info.h>
3: #include <is/inforeceiver.h>
4: #include <ipc/core.h>
5:
6: void callback(ISCallbackInfo * isc){
7: std::cout << "CALLBACK:: " << isc->name() << std::endl;
8: std::cout << "Reason code : " << isc->reason() << std::endl;
9:
10: ISInfoInt isi;
11: isc->value(isi);
12: std::cout << isi;
13: }
14:
15: int main(int ac, char ** av){
16: // Initialise communication library
17: IPCCore::init(ac, av);
18:
19: // Create the instance of partition
20: IPCPartition partition(“MyPartition“);
21:
22: // Create the IS receiver instance in the specific partitition
23: ISInfoReceiver rec(partitition);
24:
25: // Subscribe
26: rec.subscribe("MyServer.DeviceVoltage", callback);
27:
28: // call method run to block the current thread until
29: // somebody will call the stop for the rec object
30: rec.run();
31:
32: // Remove subscription
33: rec.unsubscribe("MyServer.DeviceVoltage");
34:
35: return 0;
36: }
24 Information Service User’s Gude

Subscribe using criteria
First the user program has to include the is/info.h header file which declares the
ISInfoReceiver class. This class provides the main interface for the information
subscribers. Then the program creates an instance of the IPCPartition class. This
instance represents the partition in which the Information Service will be used. The
ISInfoReceiver class constructor takes this partition object as parameter. Then, line
25 shows how to subscribe for the changes of the information called
“MyServer.DeviceVoltage”.

The next step is to block somehow the current thread to prevent it from exiting
immediately. This example calls the run method of the ISInfoReceiver class to do
this. This method is implemented by the IPCServer class from which the
ISInfoReceiver inherits. For more information about the IPCServer class see [9].
But of course this is not mandatory, a user can use his own way of blocking the
thread till this is necessary.

When the “MyServer.DeviceVoltage” information is changed the callback function
is called. The isc argument (line 4) is a pointer to the object that describes the
information changes. One can get name, type and value of the changed information
from this object. In addition it can also be used to get the reason why the callback
has been called. The valid reasons are: information has been inserted, updated or
removed from the IS repository.

5.3 Subscribe using criteria

5.3.1 How to define criteria

IS API defines class called ISCriteria to make advanced selection of information
objects in the IS repository. This chapter summarizes different types of
subscriptions, which can be done using the ISCriteria class.

synopsis: ISCriteria(“P.*”)
alternative: “P.*”
description: Subscribes to all of information objects, whose names start with capital
P.

synopsis: ISCriteria(“P.*”, Person::type())
alternative: “P.*” && Person::type()
description: Subscribes to all information objects of type Person, whose names start
with capital P.

synopsis: ISCriteria(“P.*”, Person::type(), ISCriteria::OR)
alternative: “P.*” || Person::type()
description: Subscribes to all information objects of type Person or all the objects,
whose names start with capital P.

One can also used the ~ and ! operators, which are defined for the ISType class in
order to compose advanced criteria like it is shown in the following examples.

synopsis: ISCriteria(“P.*”, !Person::type())
alternative: “P.*” && !Person::type()
Information Service User’s Gude 25

Subscribing to the IS repository
description: Subscribes to all information objects of any type but Person, whose
names start with capital P.

synopsis: ISCriteria(“P.*”, ~Person::type())
alternative: “P.*” && ~Person::type()
description: Subscribes to all information objects of type Person or of any type,
which is subtype of the Person, whose names start with capital P.

5.3.2 How to subscribe using criteria

Listing 5.2 shows how an application can subscribe for a subset of information in
the particular server of the IS repository.

This program is very similar to the one which is shown in Listing 5.1. The only
difference is in the subscribe call (line 28). The first argument of the subscribe

Listing 5.2 Subscribe using criteria

1: // include main IS header file
2: #include <Person.h>
3: #include <is/inforeceiver.h>
4: #include <ipc/core.h>
5:
6: void callback(ISCallbackInfo * isc){
7: std::cout << "CALLBACK:: " << isc->name() << std::endl;
8: std::cout << "Reason code : " << isc->reason() << std::endl;
9:
10: ISInfoAny isi;
11: isc->value(isa);
12: std::cout << isa;
13: }
14:
15: int main(int ac, char ** av){
16: // Initialise communication library
17: IPCCore::init(ac, av);
18:
19: // Create the instance of partition
20: IPCPartition partition(“MyPartition“);
21:
22: // Create the IS receiver instance the specific partitition
23: ISInfoReceiver rec(partitition);
24:
25: // Subscribe for all
26: rec.subscribe("MyServer”, “.*", callback);
27:
28: // Subscribe for all objects of type Person or any
29: // subtype of type Person
30: rec.subscribe(“MyServer”, ~Person::type() && “.*”, callback);
31:
32: // Subscribe for all objects of any type but Person OR
33: // whose name starts with capital ‘P’
34: ISCriteria criteria(“P.*”, !Person::type(), Criteria::OR);
35: rec.subscribe(“MyServer”, criteria, callback);
36:
37: // call method run to block the current thread until
38: // somebody will call the stop for the rec object
39: rec.run();
40:
41: // Remove subscriptions
42: rec.unsubscribe("MyServer", “.*”);
43: rec.unsubscribe(“MyServer”, ~Person::type() && “.*”);
44: rec.unsubscribe(“MyServer”, criteria);
45: return 0;
46: }
26 Information Service User’s Gude

Subscription modes
method specifies the IS server name, the second one the subscription criteria and
the last one the callback function. The subscription criteria must be a valid
POSIX-style regular expression. The callback function has the same format as the
function for an individual information subscription.

When any information in this particular IS server is changed the callback function
is called. The isc argument (line 4) is a pointer to the object that describes the
information which has been changed. One can get name, type and value of the
changed information from this object. In addition it can also be used to get the
reason why the callback has been called. The valid reasons are: information has
been inserted, updated or removed from the IS repository.

5.4 Subscription modes

IS API provides two modes for subscribing to the IS repository. Examples from the
previous sections use the default mode in which subscribing application will get
the whole information object as part of the notification message. Sometime this
introduces an unnecessary overhead since some subscribers may just need to be
aware that the information is been changed in the IS repository, but they might not
need to read the information value at that moment. For such applications there is a
way of telling to the IS that it should not pass the information value as part of the
notification message.

Handle With Care

Developers, which use to subscribe to the IS repository, should always consider
using the notification only mode of the subscription, because this may dramatically
reduce the network traffic in the cases where information value is not always
necessary.

The notification only mode can be chosen by providing a different callback function
as the last parameter of the ISInfoReceiver.subscribe call. Listing 5.3 shows how an
application can do that.
Information Service User’s Gude 27

Subscribing to the IS repository
Listing 5.3 Subscribe using different subscription modes

1: // include main IS header file
2: #include <Person.h>
3: #include <is/inforeceiver.h>
4: #include <ipc/core.h>
5:
6: // This callback will always get the whole info
7: void info_callback(ISCallbackInfo * isc){
8: std::cout << "INFO CALLBACK:: " << isc->name() << std::endl;
9: std::cout << "Reason code : " << isc->reason() << std::endl;
10:
11: ISInfoAny isi;
12: isc->value(isa);
13: std::cout << isa;
14: }
15:
16: // This callback will always get just the notification
17: // In order to read the the information value one must
18: // use the ISInfoDictionary::getValue function
19: void event_callback(ISCallbackEvent * isc){
20: std::cout << "EVENT CALLBACK:: " << isc->name() << std::endl;
21: std::cout << "Reason code : " << isc->reason() << std::endl;
22: }
23:
24: int main(int ac, char ** av){
25: // Initialise communication library
26: IPCCore::init(ac, av);
27:
28: // Create the instance of partition
29: IPCPartition partition(“MyPartition“);
30:
31: // Create the IS receiver instance the specific partitition
32: ISInfoReceiver rec(partitition);
33:
34: // Subscribe for all - infomation values will not be transferred
35: rec.subscribe("MyServer”, “.*", event_callback);
36:
37: // Subscribe for all objects of type Person
38: // information values will be transferred for every callback
39: rec.subscribe(“MyServer”, Person::type(), info_callback);
40:
41: // call method run to block the current thread until
42: // somebody will call the stop for the rec object
43: rec.run();
44:
45: // Remove subscription
46: rec.unsubscribe("MyServer", “.*”);
47:
48: return 0;
49: }
28 Information Service User’s Gude

Chapter 6
Browsing the IS repository

This chapter describes how to browse the content of the IS repository.

6.1 Introduction . 30

6.2 Using the IS server iterator. 30

6.3 Using the IS information iterator 31

6.4 Using extended criteria for information iterator. . . 31
Information Service User’s Gude 29

Browsing the IS repository
6.1 Introduction

As it was said already in the Chapter 1.1.2, the IS repository is implemented by a
number of applications called IS servers. Each server has unique name in the scope
of the IPC partition it belongs to. Each server may contain arbitrary number of
information objects. Each information inside the IS server has unique name.

Any application can iterate over all the valid IS servers for any valid IPC partition,
and also is able to enumerate all the information in any valid IS server. This chapter
explains how one can do this using the C++ IS API.

6.2 Using the IS server iterator

Listing 6.1 shows how an application can enumerate all the valid IS servers in the
specific IPC partition.

First the user program has to include the is/info.h header file which declares the
ISServerIterator class. Then the program creates the instance of the IPCPartition
class. This instance represents the partition in which the Information Service will be
used. The ISServerIterator class constructor takes this partition object as
parameter. Then, lines 20-21 show how to use this iterator to get back names of all
the valid IS servers in the “MyPartition” partition.

Listing 6.1 Using the IS server iterator

1: // include main IS header file
2: #include <is/infoiterator.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av)
6: {
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:
10: // Create the instance of partition
11: IPCPartition partition(“MyPartition“);
12:
13: // Create the IS server iterator instance
14: // using the partitition object as parameter
15: ISServerIterator it(partitition);
16:
17: // Print all the IS servers names
18:
19: std::cout << partition.name() << “ has " << ii.entries() << "

IS servers : " << endl;
20: while (it())
21: std::cout << it.name() << std::endl;
22: return 0;
23: }
30 Information Service User’s Gude

Using the IS information iterator
6.3 Using the IS information iterator

Program in Listing 6.2 is an extension of the previous example. For each IS server in
the ISServerIterator it shows how to enumerate all the information in this server.

In line 19 the ISInfoIterator is created for the IS server at the current position of the
ISServerIterator. Then, lines 23-30 show which information can be taken via the
ISInfoIterator: line 23 prints a number of information objects for the particular IS
server, line 26 shows how to get the name, type and date for the information at the
current iterator’s position, line 28 shows how to get the value of the information at
the current iterator’s position.

6.4 Using extended criteria for information
iterator

The last parameter of the ISInfoIterator constructor is of type ISCriteria. This allows
to define the subsets of information, covered by the current iterator, in a very
flexible way. See “How to define criteria” on page 25. for a complete description of

Listing 6.2 Using the IS information iterator

1: // include main IS header file
2: #include <is/infoiterator.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av)
6: {
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:

10: // Create the instance of partition
11: IPCPartition partition(“MyPartition“);
12:
13: // Create the IS server iterator instance
14: // using the partitition object as parameter
15: ISServerIterator it(partitition);
16:
17: // Print all the IS servers names
18:
19: std::cout << partition.name() << “ has " << ii.entries() << "

IS servers : " << endl;
20: while (it())
21: {
22: ISInfoIterator ii(p, ii.name());
23: std::cout << it.name() << “ has “ << ii.entries() << “

objects” << std::endl;
24: while(ii())
25: {
26: std::cout << ii.name() << “ : “ << ii.type() << “ : “ <<

ii.date() << std::endl;
27: ISInfoAny isa;
28: ii.value(isa);
29: std::cout << isa << std::endl;
30: }
31: }
32: return 0;
33: }
Information Service User’s Gude 31

Browsing the IS repository
how the ISCriteria can defined. Program in Listing 6.3 shows some of the possible
criteria which can be used.

Listing 6.3 Extended use of the IS information iterator

1: // include main IS header file
2: #inclide <Person.h>
3: #include <is/infoiterator.h>
4: #include <ipc/core.h>
5:
6: int main(int ac, char ** av)
7: {
8: // Initialise communication library
9: IPCCore::init(ac, av);
10:
11: // Create the instance of partition
12: IPCPartition partition(“MyPartition“);
13:
14: // iterator will contain all the objects of type Person
15: ISInfoIterator ii(p, “MyServer”, Person::type());
16:
17: // iterator will contain all the objects of any type but Persin,
18: // whose names start with capital P
19: ISInfoIterator ii(p, “MyServer”, !Person::type() && “P.*”);
20:
21: return 0;
22: }
32 Information Service User’s Gude

Chapter 7
Reading information with unknown

structure

This chapter describes how applications can read information from the IS
repository when the information type is not known at compilation time.

7.1 Introduction . 34

7.2 Using ISInfoAny class to print out information . . . 34

7.3 Parsing content of the ISInfoAny object 35
Information Service User’s Gude 33

Reading information with unknown structure
7.1 Introduction

The IS API provides a possibility to read information objects whose types are not
known at compilation time. This facility can be used to implement user interface
applications, which will be able to display any information from the IS repository
and don’t need to be reprogrammed and recompiled when a new information types
appear.

7.2 Using ISInfoAny class to print out information

The IS API has a special class called ISInfoAny which can be used to read the
information of any type. Listing 7.1 shows a very simple example of how to use this
class to print out the information content to the standard C++ stream.

There IS library implements a global output operator for the ISInfoAny class which
is used in this example (line 16). Listing 7.2shows an example of the output
produced by this operator.

Listing 7.1 Using ISInfoAny class to print out information

1: // include IS header file
2: #include <is/infoany.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av)
6: {
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:
10: // Create the instance of partition
11: IPCPartition partition(“MyPartition“);
12:
13: ISInfoIterator ii(p, “MyServer”);
14: while(ii())
15: {
16: std::cout << ii.name() << “ “ << ii.time() << “ “ <<

ii.type() << std::endl;
17: ISInfoAny isa;
18: ii.value(isa);
19: std::cout << isa << std::endl;
20: }
21:
22: return 0;
23: }

Listing 7.2 Programs output

 MyServer.Employee <4/3/03 15:56:55> <Employee>
 4 attribute(s):
 string : Jone
 date : 4/3/03
 long : 0
 unsigned short : 3000
 MyServer.Person <4/3/03 15:56:55> <Person>
 3 attribute(s):
 string : Jone
 date : 4/3/03
 long : 0
34 Information Service User’s Gude

Parsing content of the ISInfoAny object
7.3 Parsing content of the ISInfoAny object

The applications which want to use another format for the information
presentation or to use ISInfoAny for another purpose have to parse the content of
the ISInfoAny object. The ISInfoAny class provides access for the information
value in a stream manner: attribute by attribute. It has a number of input operators
which can be used to get the value of a single-value attribute, and a number of get
methods which can be used to read an array attribute values. Each input operation
(if it was successful) advances the “current position” in the stream to the value of
the next attribute. There is a method which returns type of the attribute at the
current stream position. Listing 7.3 shows how to print to the standard output the
value of an information object using operators and methods of the ISInfoAny class.

Listing 7.3 Parsing content of the ISInfoAny object

1: // include IS header file
2: #include <is/infoany.h>
3:
4: void print (ISInfoAny & isa)
5: {
6: int attr_number = isa.countAttributes();
7:
8: std::cout << attr_number << " attribute(s):" << std::endl;
9: for (i = 0; i < attr_number; i++) {

10: switch (isa.getAttributeType()){
11: case ISType::Boolean:
12: ISOut<bool>::put(isa, "boolean");
13: break;
14: case ISType::S8:
15: ISOut<short>::put(isa, "signed byte");
16: break;
17: case ISType::U8:
18: ISOut<short>::put(isa, "unsigned byte");
19: break;
20: case ISType::S16:
21: ISOut<short>::put(isa, "short");
22: break;
23: case ISType::U16:
24: ISOut<unsigned short>::put(isa, "unsigned short");
25: break;
26: case ISType::S32:
27: ISOut<long>::put(out, isa, "long");
28: break;
29: case ISType::U32:
30: ISOut<unsigned long>::put(isa, "unsigned long");
31: break;
32: case ISType::Float:
33: ISOut<float>::put(isa, "float");
34: break;
35: case ISType::Double:
36: ISOut<double>::put(isa, "double");
37: break;
38: case ISType::String:
39: ISOut<std::string>::put(isa, "string");
40: break;
41: case ISType::Date:
42: ISOut<OWLDate>::put(isa, "date");
43: break;
44: case ISType::Time:
45: ISOut<OWLTime>::put(isa, "time");
46: break;
47: default:
48: std::cout << " { ERROR: Invalid Type } " << std::endl;
49: }
50: }
51: }
Information Service User’s Gude 35

Reading information with unknown structure
First this program gets the number of the information attributes using the
countAttributes method of the ISInfoAny class (line 6). Then, for each attribute it
finds out the attribute type (line 11) and calls the put method of the ISOut<T>
template class. This method reads the value of that attribute from the ISInfoAny
object, and prints this value to the standard output stream. The ISOut<T> template
class is shown in Listing 7.4.

The template class is used here to simplify the code. Alternatively one can explicitly
define a number of functions to handle different attribute types.

Listing 7.4 Implementation of the ISOut<T> class

1: template <class T>
2: class ISOut
3: {
4: public:
5: static inline void put(ISInfoAny & isa, const char * name)
6: {
7: std::cout << name << " : ";
8: if (isa.isAttributeArray())
9: {
10: std::vector<T> value;
11: isa >> value;
12:
13: for (size_t i = 0; i < value.size(); i++)
14: std::cout << value[i] << " ";
15: }
16: else
17: {
18: T value;
19: isa >> value;
20: std::cout << value;
21: }
22: std::cout << std::endl;
23: }
24: };
36 Information Service User’s Gude

Chapter 8
Sending and Receiving commands

This chapter describes how an application can send command to a particular IS
information provider.

8.1 Introduction . 38

8.2 Implementing IS command listener. 38

8.3 Sending commands to information providers 39
Information Service User’s Gude 37

Sending and Receiving commands
8.1 Introduction

Any application, which publishes at least one information object in the IS is
considered as an Information Provider. IS provides a possibility to send commands
to Information Providers by any application. In order to do this an application has
to read the information object, published in the IS by the corresponding Provider,
and call the sendCommand method of that object.

Caution

The IS commands facility is not an alternative for the general control commands. It
must be used only to control the IS information flow. For example an application
may ask a particular information provider to increase the frequency of information
updates or to republish a particular information.

Caution

For the moment there are no standard commands defined in the IS. An IS command
is simply a character string, which is formed by a particular command sender and
can be interpreted by a particular information providers. Therefore the ability of the
correct command interpretation is a subject of an agreement between certain
information providers and command senders. An information provider should just
ignore the commands, which it is not able to interpret.

8.2 Implementing IS command listener

Listing 8.1 shows what an application has to do in order to be able to receive
commands, which are sent to the information objects provided by this application.

First, the user program has to include the is/infoprovider.h which declares the
ISInfoProvider and ISCommandListener classes. Then it is necessary to declare
the command listener class, which has to inherit the ISCommandListener and
override a single pure virtual function defined in this class. In the above example
this is done by lines 5-13. The user’s command listener class is called
MyCommandListener. This class provides implementation of the command
function. This function will be called when a command to this information provider
38 Information Service User’s Gude

Sending commands to information providers
is received. It has two arguments: first one is a command itself and the second one
is the name of the information object, to which this command has been sent.

Then the program creates the instance of the MyCommandListener class and
activates this instance using the ISInfoProvider::addCommandListener function (line
23). Only after the call to the addCommandListener function, the user’s command
listener will be able to receive commands. The counterpart of the
addCommandListener function is the ISInfoProvider::removeCommandListener one,
which can be used to deactivate a particular command listener as it is shown in line
26.

8.3 Sending commands to information
providers

Listing 8.2 shows how an application can send commands to an information
provider.

In order to do send command to a particular information provider it is necessary to
read one of the information objects, which were published by this provider, from
the IS repository (line 21). As soon as this is done successfully one can use the
ISInfo::sendCommand method to send a command to the provider of that
information (lines 24-25).

Listing 8.1 Command listener example

1: // include main IS header file
2: #include <is/infoprovider.h>
3: #include <ipc/core.h>
4:
5: class MyCommandListener : public ISCommandListener {
6: public:
7: void command(const std::string & name,
8: const std::string & cmd) {
9: std::cout << "MyCommandListener:: command '"

10: << cmd << "' received for the '"
11: << name << "' info" << std::endl;
12: }
13: };
14:
15: int main(int ac, char ** av) {
16: // Initialise communication library
17: IPCCore::init(ac, av);
18:
19: // Create the instance of command listener
20: MyCommandListener lst;
21:
22: // Register the command listener
23: ISInfoProvider::instance().addCommandListener(&lst);
24: ...
25: // Deactivate the command listener before exiting
26: ISInfoProvider::instance().removeCommandListener(&lst);
27: return 0;
28: }
Information Service User’s Gude 39

Sending and Receiving commands
Listing 8.2 Sending commands example

1: // include main IS header file
2: #include <is/infodocument.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av) {
6: // Initialise communication library
7: IPCCore::init(ac, av);
8:
9: // Create the instance of partition
10: IPCPartition partition(“MyPartition“);
11:
12: // Create the IS discitonary
13: ISInfoDictionary(partitition);
14:
15: // Create the instance of the information
16: // to which we want to send command
17: ISInfoInt voltage;
18:
19: // Read information from the IS
20: ISInfo::Status status;
21: status = dict.getValue("MyServer.DeviceVoltage", voltage);
22:
23: // Only if we read the info successfully we can send command
24: if (status == ISInfo::Success)
25: voltage.sendCommand(“republish“);
26:
27: return 0;
28: }
40 Information Service User’s Gude

Chapter 9
Reading information type description

This chapter describes how applications can read IS information types
descriptions (IS meta-type information).

9.1 Introduction . 42

9.2 Setting up the IS meta-information repository. . . . 42

9.3 Reading the IS type description 43

9.4 Reading all available IS types descriptions. 44
Information Service User’s Gude 41

Reading information type description
9.1 Introduction

For the IS types which have been defined using the procedure described in
Chapter 3, an application can get the type description at run-time. The type
description includes the name of the type and the text explaining this type (if this
text has been provided by the type creator). In addition it is possible to get a
number of the type’s attributes and also type and textual description for each of
them. This type meta-information can be used by a user interface application to
display information description along with the information value, allowing user to
understand the meaning of the IS information. Such application can be
programmed so that it will not require reprogramming and recompilation when a
new information types appear.

Remember

The applications which are using the IS type meta-information API must be linked
with the libisdoc and librdb libraries. The libisdoc library is part of the IS itself,
while the librdb is library implemented by the Remote Database (RDB)[11]
component of the Online Software.

9.2 Setting up the IS meta-information
repository

In order to make the IS type descriptions available at run-time one has to setup
properly the IS meta-information repository. This can be done in two ways as it is
explained below.

Manual setup One way of setting up the IS meta-information repository is to run manually the
RDB server application using the following command line:

> rdb_server -p MyPartition -d ISRepository -S [[xml_file]...]

The -d switch defines the database name that must always be the “ISRepository” for
the IS meta-information server. The -S parameter defines a list of the XML files
which contain IS informations definition.

Setup using the
standard Online

Software
environment

Another possibility is to set the TDAQ_IS_REPOSITORY environment variable to
the colon separated list of the XML files which contain IS informations definition
and then to use the standard Online Software procedure for starting a partition.

> export TDAQ_IS_REPOSITORY=[[xml_file]:...]
> play_daq MyPartition
42 Information Service User’s Gude

Reading the IS type description
9.3 Reading the IS type description

Listing 9.1 shows how an application can get description for the Person type
defined in Chapter 3.2.

First, the user program has to include the is/infodocument.h which declares the
ISInfoDocument class. Then the program creates an instance of the IPCPartition
class. This instance represents the partition in which the Information Service will be
used. The ISInfoDocument class constructor takes this partition object as first
argument. The second argument is the class for the valid IS information type,
which is the Person class in this example.Then, lines 19-27 show how to get the
Person type description using the methods of the ISInfoDocument class.

Listing 9.1 Reading the Person type description

1: // include main IS header file
2: #include <is/Person.h>
3: #include <is/infodocument.h>
4: #include <ipc/core.h>
5:
6: int main(int ac, char ** av)
7: {
8: // Initialise communication library
9: IPCCore::init(ac, av);

10:
11: // Create the instance of partition
12: IPCPartition partition(“MyPartition“);
13:
14: Person person;
15:
16: // Create the IS information description object
17: // for the Person type
18: ISInfoDocument isd(partitition, person);
19:
20: // Print out Person’s type description
21:
22: std::cout << "class " << isd.name()
23: << " { // " << isd.description() << std::endl;
24: for (size_t i = 0; i < isd.attributeCount(); i++)
25: {
26: const ISInfoDocument::Attribute * attr = isd.attribute(i);
27: std::cout << attr -> typeName()
28: << (attr -> isArray() ? "[] " : " ")
29: << attr -> name()
30: << "; // " << attr -> description() << std::endl;
31: }
32: std::cout << "};" << std::endl;
33:
34: return 0;
35: }
Information Service User’s Gude 43

Reading information type description
9.4 Reading all available IS types descriptions

Listing 9.2 shows how to an application can get all the available descriptions for the
IS types.

This program uses the ISInfoDocument::Iterator class (which is member class of
the ISInfoDocument) to get all the available IS types descriptions.

Listing 9.2 Reading all available IS types descriptions

1: // include main IS header file
2: #include <is/infodocument.h>
3: #include <ipc/core.h>
4:
5: int main(int ac, char ** av)
6: {
7: // Initialise communication library
8: IPCCore::init(ac, av);
9:
10: // Create the instance of partition
11: IPCPartition partition(“MyPartition“);
12:
13: // Create the IS information description object
14: // for the Person type
15: ISInfoDocument::Iterator it(partitition);
16:
17: // Print out types descriptions
18:
19: while (it) // while current iterator’s position is valid
20: {
21: // get current document and advance iterator to the next position
22: const ISInfoDocument & isd = *it++;
23:
24: // Print out type description
25:
26: std::cout << "class " << isd.name()
27: << " { // " << isd.description() << std::endl;
28: for (size_t i = 0; i < isd.attributeCount(); i++)
29: {
30: const ISInfoDocument::Attribute * attr = isd.attribute(i);
31: std::cout << attr -> typeName()
32: << (attr -> isArray() ? "[] " : " ")
33: << attr -> name()
34: << "; // " << attr -> description() << std::endl;
35: }
36: std::cout << "};" << std::endl;
37: }
38:
39: return 0;
40: }
44 Information Service User’s Gude

Building and running IS applications
Chapter 10
Building and running IS applications

This chapter explains how to compile and build IS example applications and also
how to setup the IS repository in order to run these examples.

10.1 Information Provider and Information Receiver
examples46

10.2 Running IS examples 47

10.3 Troubleshooting Tips 48
Information Service User’s Gude 45

Building and running IS applications
10.1 Information Provider and Information
Receiver examples

There are two IS example applications installed as a part of the Online software
release. The first one, written in C++, publishes information to the IS and another
one, implemented in Java, reads this information. They are using the information
classes defined with the OKS schema editor and stored in the is_examples.xml file,
that is also included to the release. They will be explained in more detail in this
chapter.

Check Item

Several IS examples are installed in the <TDAQ Release>/share/examples/is
directory along with the makefiles which can be tuned to be used with different
operating system supported by the Online software.

10.1.1 Information Provider example application

Information Provider example contains one C++ file create_info.cc which shows
how to use the ISInfoDictionary class for publishing information.

10.1.2 IS reader example application

IS reader example shows how to get information from the IS and also how to get
the IS type description for a specific IS type. This example is implemented in Java
and contains one file ReadInfo.java.

10.1.3 Makefiles

The makefile is tuned by default to the Linux RedHat 7.3 operating system and
GCC version 2.95 compiler. If you want to build examples for another operating
system you have to modify the following makefile variables:

– PLATFORM_DIR - CMT target that defines OS/compiler combination (see
makefile for the available targets)

– SOCKET_LIBS - socket library to be linked with (if necessary)

– THREAD_LIB - thread library to be linked with

– CC - compiler to be used

– RELEASE_DIR - make sure that RELEASE_DIR points to the root of the Online
software installation.
46 Information Service User’s Gude

Running IS examples
10.1.4 Compiling examples

You can compile and build the example applications by typing the following
command in the respective examples sub-directory:

> make

10.2 Running IS examples

In order to run the IS example application one has to do the following steps.

1. Setup your
environment

Setup your environment so that you have access to the Online software release.
Normally it is done by sourcing the setup script. For example for the Online
Software release on AFS one has to execute the following command:

> source /afs/cern.ch/atlas/project/tdaq/cmt/bin/cmtsetup.[c]sh
<release name>

For up-to-date instruction see:

http://lnxatd01.cern.ch/cmt/releases/

2. Run partition Start two IPC servers. One of them is used to run the general partition and another
implements the named partition to be used by the IS examples.

> ipc_server &
> ipc_server -p MyPartition &

3. Start the IS
server

Now run the is_server application:

> is_server -p MyPartition -n MyServer&

4. Setup the IS
meta

information
repository

Start the rdb_server with the XML files which contain description of your IS types:

> rdb_server -p MyPartition -d ISRepository -S \
${RELEASE_DIR}/share/examples/is/data/is_example.xml

The -d switch defines the database name that must always be the ISRepository for
the IS meta-information server. The -S parameter defines a list of the XML files
which contain IS informations definition.

5. Run the
Information

Provider

Run the information provider example by giving the following command (in the
cpp sub-directory):

> create_info -p MyPartition -n MyServer -P Person1 -E Employee1

The -P and -E switches defines the names of the information objects that will be
created in the MyServer IS server which belongs to the MyPartition partition.

6. Read the Is IS
information

Run the IS information reader application by executing the following command (in
the java sub-directory):

> java -classpath \
.:${RELEASE_DIR}/share/lib/ipc.jar:${RELEASE_DIR}/share/lib/is.jar:${RE
LEASE_DIR}/share/lib/rdb.jar ReadInfo MyServer Person1 Employee1 \
MyPartition
Information Service User’s Gude 47

Building and running IS applications
10.3 Troubleshooting Tips

This chapter helps to resolve problems that may appear while trying to run the IS
examples. It describes the possible error messages and the actions that must be
taken to resolve the problem.

10.3.1 IS server errors

21/2/03 18:56:06 :: ERROR [ISRepository::ISRepository()] Cannot publish
"MyServer" object in the partition MyPartition

This error indicates that the IPC server for the MyPartition partition is not running
or the network is not functioning. See Section 2 of Chapter 10.2 for how to start the
named IPC server.

10.3.2 Information Provider errors

25/2/03 11:35:50 :: ERROR [IPCPartition::lookup] Can not find partition
MyPartition
Checkout for MyServer.Person1 fails with error code "CommFailure"

This error indicates that the IPC server for the MyPartition partition is not running
or the network is not functioning. See Section 2 of Chapter 10.2 for how to start the
named IPC server.

Checkin for MyServer.Person1 fails with error code "CommFailure"

This error indicates that the IS server for the MyServer partition is not running or
the network is not functioning. See Section 3 of Chapter 10.2 for how to start the IS
server.

10.3.3 Information reader errors

Exception in thread "main" ipc.PartitionNotFoundException: MyPartition
partitition server is not running

This error indicates that the IPC server for the MyPartition partition is not running
or the network is not functioning. See Section 2 of Chapter 10.2 for how to start the
named IPC server.

ERROR::IS server not found

Indicates that the MyServer IS server is not running or the network is not
functioning. See Section 3 of Chapter 10.2 for how to start the IS server.

ERROR::No information about IS object type

Indicates that the RDB server with the IS meta-information is not running or the
network is not functioning. See Section 4 of Chapter 10.2 for how to start the IS
meta-information RDB server.
48 Information Service User’s Gude

Chapter 11
IS Utilities

The Online Software release includes two IS utilities which can be used to browse
the contents of the IS repository. One is a command line text application called is_ls
and another one is Motif based graphical application called is_monitor. This
chapter explains how one can use them.

11.1 Terminal applications. 50

11.2 Graphical utility . 51
Information Service User’s Gude 49

IS Utilities
11.1 Terminal applications

11.1.1 Information listing application (is_ls)

The IS listing application is called is_ls and can be used to see the contents of all the
valid IS servers in all the valid IPC partitions. It’s command line has the following
syntax:

Usage is_ls [-v] [-p partition-name] [-n server-name] [-R reg-expr] [-D] [-N]
[-T]

Options/Arguments:
 -v print information values.
 -p partition-name partition to get the IS server.
 -n server-name IS server to get information from.
 -R regular-expression defines information to be printed.
 -D print description of information

attributes (if available).
 -N print names of information attributes (if

available).
 -T print types of information attributes.
 -H print information history (if available).

Being started without parameters the is_ls shows all the valid IS servers in the
default IPC partition and for each server prints a list of existing information. This
list contains information names, types and dates. If -v flag is set the is_ls will print
also information values.

11.1.2 Commander application (is_cmd)

The IS command sender application is called is_cmd and can be used to send
commands to the information providers.

Usage is_cmd [-v] [-p partition-name] [-n server-name] -c command [-i
info-names] [-R regular-expression]

Options/Arguments:
 -v verbose mode is on.
 -p partition-name partition to get the IS server.
 -n server-name IS server to get information from.
 -c command command to send
 -i info-names names of infomation to send commands to
 -R regular-expression regular expression for information to

send command to.

11.1.3 Information remover application (is_rm)

The IS information remover application is called is_rm and can be used to remove a
particular information from the IS repository.

Usage is_rm [-v] [-p partition-name] [-n server-name] [-R regular-expression]

Options/Arguments:
50 Information Service User’s Gude

Graphical utility
 -v verbose mode is on.
 -p partition-name partition to work in.
 -n server-name IS server to work with.
 -R regular-expression regular expression for information to be

removed.

11.2 Graphical utility

The IS monitor application can be used to see the contents of all the valid IS servers
in all the valid IPC partitions in interactive mode. It has no parameters and can be
started by executing the following command:

> is_monitor

Figure 11.1 shows the main window of the IS Monitor.

The numbers in the Figure 11.1 mark the main control elements of the IS monitor’s
interface:

1. Exit - exits the IS monitor.

2. Show info list - creates new window with the information for the IS server selected in 4..

3. Select partition - select IPC partition in which to show the valid IS servers.

4. List of IS servers - shows valid IS servers for the selected partition.

Using the IS monitor one can select a partition and an IS server in this partition.
Then by pressing the “Show Info List” button one can open a new window which
shows the information in the selected IS server. This window is dynamically
updated whenever the information is changed in the IS server. One can open

Figure 11.1 IS Monitor main window

� � ��
Information Service User’s Gude 51

IS Utilities
several such windows either for the same or for different IS servers. Figure 11.2
shows an example of the IS monitor information window.

The numbers in the Figure 11.1 mark the main control elements of the IS
information window:

1. Close - close this window.

2. Delete Info - removes information selected in 3. from the IS server.

3. Information list - displays list of information for the selected IS server.

4. Information value - shows attributes of the information selected in 3..

5. shows number of attributes for the information selected in 3..

6. shows number of information in the selected IS server.

Figure 11.2 IS Monitor information window

� �

�

�

��
52 Information Service User’s Gude

C++ API: Class Reference
Chapter 12
C++ API: Class Reference

The Class Reference describes all the classes and functions in the C++ API of the
Information Service. The Reference is organised as an alphabetical listing of classes.
The entry for each class begins with a synopsis that lists the header files associated
with the class, followed by an illustration showing the class’s usage example. The
synopsis also shows a declaration and definition of a class object. Following the
synopsis is a brief description of the class and a list of member functions.

12.1 ISCallbackEvent . 54

12.3 ISCommandListener 57

12.5 ISInfo . 60

12.6 ISInfoAny . 63

12.7 ISInfoDictionary. . 65

12.8 ISInfoDocument . 68

12.9 ISInfoDocument::Attribute. 70

12.10 ISInfoDocument::Iterator. 72

12.11 ISInfoIterator . 74

12.12 ISInfoProvider . 77

12.13 ISInfoReceiver . 79

12.14 ISInfoT<T>. . 82

12.15 ISNamedInfo . 84

12.16 ISServerIterator . 88

12.17 ISType . 90

12.18 ISistream . 93

12.19 ISostream. . 95
Information Service User’s Gude 53

C++ API: Class Reference
12.1 ISCallbackEvent

Synopsis

#include <is/inforeceiver.h>
void user_callback(ISCallbackEvent * isc) { ... }

Description

This class is used to pass the information about changes in the IS repository to the
user callback function which has been subscribed for these information using the
ISInfoReceiver class. If callback function with this parameter is used for the
subscription, then IS will not transfer object values as part of the notification.

This class has no public constructors and can’t be created by a user. The pointer to
an instance of this class is passed as an argument to the user callback function.

Example

1: void user_callback(ISCallbackInfo * isc){
2: ISInfoInt isi;
3:
4: if (isc->type() == isi.type()){
5: isc->value(isi);
6: cout << isc->name() << " : " << isi << endl;
7: }
8: else
9: cout << isc->name() << " has unknown type " << isc->type() <<

endl;
10: }

Public Member Functions

ISType
type();

Returns type of the changed information.

const char *
name();

Returns name of the changed information.

void *
parameter();

Returns user’s parameter that has been provided via the subscribe
method of the ISInfoReceiver method.

ISInfoReason
reason();

Returns the reason of notification.
54 Information Service User’s Gude

ISCallbackInfo
12.2 ISCallbackInfo

Base Classes

ISCallbackEvent

Synopsis

#include <is/inforeceiver.h>
void user_callback(ISCallbackInfo * isc) { ... }

Description

This class is used to pass the information about changes in the IS repository to the
user callback function which has been subscribed for these information using the
ISInfoReceiver class. If callback function with this parameter is used for the
subscription, then IS will transfer object values as part of the notification.

This class has no public constructors and can’t be created by a user. The pointer to
an instance of this class is passed as an argument to the user callback function.

Example

1: void user_callback(ISCallbackInfo * isc){
2: ISInfoInt isi;
3:
4: if (isc->type() == isi.type()){
5: isc->value(isi);
6: cout << isc->name() << " : " << isi << endl;
7: }
8: else
9: cout << isc->name() << " has unknown type " << isc->type() <<

endl;
10: }

Public Member Functions

ISType
type();

Inherited from ISCallbackEvent.

const char *
name();

Inherited from ISCallbackEvent.

void *
parameter();

Inherited from ISCallbackEvent.
Information Service User’s Gude 55

C++ API: Class Reference
ISInfoReason
reason();

Inherited from ISCallbackEvent.

ISInfo::Status
value(ISInfo & info);

Puts the new value of the information to the info object. This
object must have the same type as the object whose value was
changed. Returns ISInfo::IncompatibleType if the type of info is not
the same as type of the changed information.
56 Information Service User’s Gude

ISCommandListener
12.3 ISCommandListener

Synopsis

#include <is/infoprovider.h>
class MyCommandListener : public ISCommandListener { ... };

Description

This class is an abstract base class for the IS command receivers. It has one pure
virtual method, which must be implemented by the user command receiver class.

Example

1: class MyCommandListener : public ISCommandListener
2: {
3: public:
4: void command(const std::string & name, const std::string &

cmd)
5: {
6: std::cout << "MyCommandListener:: command '" << cmd
7: << "' received for the '" << name << "' info" <<

std::endl;
8: }
9: };

10:
11: MyCommandListener lst;
12:
13: ISInfoProvider::instance().addCommandListener(&lst);

Public Virtual Function

void
command(const std::string & name, const std::string & cmd) = 0;

Pure virtual function, which must be overridden by the user’s
class, which want to implement command listener. The name is
the name of the information object, to which the cmd command
has to be applied.
Information Service User’s Gude 57

C++ API: Class Reference
12.4 ISCriteria

Synopsis

#include <is/criteria.h>
ISCriteria criteria(".*");

Description

Objects of this class are used for subscriptions and browsing the content of the IS
repository.

Example

1: #include <Person.h>
2:
3: Person person;
4: IPCPartition p;
5: ISInfoIterator it(p, "MyServer", ISCriteria("P.*",

Person::type()));

Enumerations

enum Logic { AND, OR };
Value of this type can be used in one of the ISCriteria
constructors to define the complete criteria.

Public Constructors

ISCriteria();
Constructs the default criteria, which match to any information
object in the IS repository.

ISCriteria(const std::string & reg_exp);
Constructs the criteria, which match to any information object,
whose name match to the reg_exp regular expression.

The reg_exp parameter must be a regular expression as defined
in POSIX 1003.2.

ISCriteria(const ISType & type);
Constructs the criteria, which match to any information object of
the type type.

ISCriteria(const std::string & reg_exp, const ISType & type, Logic
58 Information Service User’s Gude

ISCriteria
logic = AND);
If logic parameter is set to AND (the default value), constructs
the criteria, which match to any information object, whose name
match to the reg_exp regular expression, and which is of type
type. If logic parameter is set to OR, constructs the criteria,
which match to any information object, whose name match to
the reg_exp regular expression, or which is of type type.

The reg_exp parameter must be a regular expression as defined
in POSIX 1003.2.
Information Service User’s Gude 59

C++ API: Class Reference
12.5 ISInfo

Synopsis

#include <is/info.h>
class MyInfo: public ISInfo { ... };

Description

This is an abstract class that is used as base class for a user-defined information
types.

Example

1: class Person: public ISInfo {
2: public:
3: std::string name;
4: unsigned int age;
5:
6: Person() : ISInfo("Person")
7: { ; }
8:
9: void publishGuts(ISostream & out){
10: out << name << age;
11: }
12:
13: void refreshGuts(ISistream & in){
14: in >> name >> age;
15: }
16: };
17:
18: Person person;
19: ISInfoDictionary id;
20:
21: ISInfo::Status s;
22: s = id.getValue("IS_Server_Name.Some_Person_Name", person);
23:
24: // send command to the person’s information provider
25: if (s == sucecss)
26: {
27: person.sendCommand("hello");
28: }

Enumerations

enum Status { Success, CommFailure, AlreadyExist, NotFound,
InvalidInfo, IncompatibleType, InvalidExpression, RepositoryNotFound,
ProviderNotFound, InvalidName };

Value of this type is returned by most of the methods of the C++
IS API.
60 Information Service User’s Gude

ISInfo
enum Reason { Created, Updated, Deleted };
Value of this type is returned by the ISCallbackEvent::reason
function.

Protected Constructor

ISInfo(const char * type_name = ISType::Unknown);
Constructs the information object. The type_name defines the
name of the user defined information type.

Virtual Member Functions

virtual void
publishGuts(ISostream & out);

Writes the object’s state to an output stream. User-defined class
must implement this method by writing all class’ attributes to
the out stream.

virtual void
refreshGuts(ISistream & in);

Reads the object’s state from an input stream. User-defined class
must implement this method by reading all class’ attributes from
the in stream.

Public Member Functions

ISInfo::Status
sendCommand(const std::string & cmd) const;

Send the cmd command to the provider of that information
object. This function can be called only in case an information
value has been successfully read from the IS repository using this
information object. Returns ISInfo::Success if command was
delivered to the information provider. Returns
ISInfo::ProviderNotFound if the provider access information is not
available. This happens if one tries to call this function using the
uninitialized instance if the information class. Returns
ISInfo::CommFailure the corresponding provider is not running.

bool
providerExists() const;

Returns true if provider of this information object exists. Returns
false if either the corresponding provider is not running or the
information object, which has been used to invoke this function
was not properly initialized. The proper initialization means that
this object must have been used to read an information value
from the IS repository before calling the providerExists function.

ISType&
Information Service User’s Gude 61

C++ API: Class Reference
type();
Returns reference to the information type. This type can be used
for comparison and also for accessing the IS meta-type
information.

OWLTime&
time();

Returns reference to the time of the last information update. For
the just created information returns creation time. For the
definition of the OWLTime class see [12].
62 Information Service User’s Gude

ISInfoAny
12.6 ISInfoAny

Base Classes

ISInfo, ISistream

Synopsis

#include <is/infoany.h>
ISInfoAny isa;

Description

This class is used to read the information which type is unknown at compilation
time. The access to the information attributes is organized in a stream manner.
Single attributes can be read by one of the >> operators. For the array attributes one
of the get methods must be used. Each call to the >> operator or to the get method
advances stream position to the next attribute. The reset method can be used to go
back to the beginning of the stream.

Example

1: #include "is/isinfoany.h"
2:
3: IPCPartition partition("MyPartition");
4: ISInfoIterator ii(partition, "MyServer");
5: ISInfoAny isa;
6: while (ii()) {
7: ii.value(isa);
8: cout << isa;
9: }

Public Member Functions

ISType::Basic
getAttributeType () const;;

Returns type of the attribute at the current stream position. For
the definition of the ISType::Basic enumeration see
Chapter 12.17.

bool
isAttributeArray () const;

Returns true if the attribute at the current stream position is an
array, otherwise returns false.

size_t
countAttributes () const;

Returns a number of attributes for the information object.
Information Service User’s Gude 63

C++ API: Class Reference
void
reset ();

Set stream position to the beginning of the stream.

Remember

The public >> operators and get member functions are inherited from the ISistream
class. For their description see Chapter 12.18.

Related Global Operator

std::ostream & operator<< (std::ostream & out, ISInfoAny & isa);
Print out value of the isa to the standard output stream out.
64 Information Service User’s Gude

ISInfoDictionary
12.7 ISInfoDictionary

Synopsis

#include <is/infodictionary.h>
IPCPartition p("MyPartition");
ISInfoDictionary id(p);

Description

This class provides the main interface to the IS information repository. By using the
methods of this class an application can create a new information in the IS
repository, update or delete already existing information.

Example

1: #include <is/ISInfoT.h>
2: #include <vector>
3:
4: IPCPartition partition(“MyPartition“);
5: ISInfoDictionary dict(partitition);
6:
7: ISInfoInt voltage(220);
8: dict.insert("MyServer.DeviceVoltage", voltage);
9:

10: voltage = 360;
11: // replace the old value (no history)
12: dict.update("MyServer.DeviceVoltage", voltage);
13:
14: voltage = 370;
15: // keep the old value in the history
16: dict.update("MyServer.DeviceVoltage", voltage, true);
17:
18: voltage = 380;
19: // put the old value again to the history
20: dict.update("MyServer.DeviceVoltage", voltage, true);
21:
22: ISInfoInt vv;
23: // read the last value
24: dict.getValue("MyServer.DeviceVoltage", vv);
25:
26: std::vector<ISInfoInt> v_history;
27: // read all values (including the old ones)
28: dict.getValues("MyServer.DeviceVoltage", v_history);
29:
30: for(size_t i = 0; i < v_hsitory; i++)
31: std::cout << "value [" << i << "] = " << v_history[i] <<

std::endl;

Public Constructors
Information Service User’s Gude 65

C++ API: Class Reference
ISInfoDictionary();
Constructs new ISInfoDictionary object which can be used for
access to the IS repository in the default IPC partition.

ISInfoDictionary(const IPCPartition & part);
Constructs new ISInfoDictionary object which can be used for
access to the IS repository in the part IPC partition.

Public Member Functions

bool
contains(const char * name) const;

Returns true if the information object with the name name exists
in the IS repository, otherwise returns false.

ISInfo::Status
insert(const char * name, ISInfo & info) const;

Creates new information object with the name name in the IS
repository. On success returns ISInfo::Success. Returns
ISInfo::AlreadyExist, if information object with this name already
exists in the IS repository. Returns ISInfo::CommFailure if the IS
repository is not available.

ISInfo::Status
remove(const char * name) const;

Removes information object associated with the name name
from the IS repository. On success returns ISInfo::Success. Returns
ISInfo::NotFound if such object doesn’t exist. Returns
ISInfo::CommFailure if the IS repository is not available.

ISInfo::Status
findType(const char * name, ISType & type) const;

Is obsolete. The getValue(const char * name, ISInfo & info)
const; function has to be used instead.

ISInfo::Status
getType(const char * name, ISType & type) const;

Gets type of the information object associated with the name
name. On success returns ISInfo::Success. Returns
ISInfo::NotFound if such object doesn’t exist. Returns
ISInfo::CommFailure if the IS repository is not available.

ISInfo::Status
findValue(const char * name, ISInfo & info) const;

Is obsolete. The getValue(const char * name, ISInfo & info)
const; function has to be used instead.

ISInfo::Status
66 Information Service User’s Gude

ISInfoDictionary
getValue(const char * name, ISInfo & info) const;
Reads the value of the information object with the name name
from the IS repository into the info object. On success returns
ISInfo::Success. Returns ISInfo::NotFound if such object doesn’t
exist. Returns ISInfo::CommFailure if the IS repository is not
available.

The info object must have the same type as information object
associated with the name name. Otherwise this function returns
ISInfo::IncompatibleType error and doesn’t change the info object.

ISInfo::Status
update(const char * name, ISInfo & info, bool keep_history = false)
const;

Updates the information object with the name name in the IS
repository. New information value is taken from the info object.
On success returns ISInfo::Success. Returns ISInfo::NotFound if
such object doesn’t exist. Returns ISInfo::CommFailure if the IS
repository is not available.

The keep_history parameter tells to the IS repository what to do
with the previous information value. If it is set to false (the
default value) then the old value is dropped and the new one
simply replaces it. If this parameter is true then the old value is
stored and can be accessed using the ISInfoDictionary::getValues
function.

Public Template Function

template <class T>
ISInfo::Status
getValues(const char * name, std::vector<T> & values, long how_many =
-1) const;

Reads how_many values of the name information object from the
IS repository into the values vector. The -1 value for the
how_many parameter (the default one) means that all the history
values will be read from the IS repository. On success returns
ISInfo::Success. Returns ISInfo::NotFound if the name object
doesn’t exist. Returns ISInfo::CommFailure if the IS repository is
not available. The template parameter is replaced by the actual
type of the IS information.

The T object must have the same type as information object
associated with the name name. Otherwise this function returns
ISInfo::IncompatibleType error and doesn’t change the values
vector.
Information Service User’s Gude 67

C++ API: Class Reference
12.8 ISInfoDocument

Synopsis

#include <is/infodocument.h>
#include <Person.h>
IPCPartition p ("MyPartition");
Person person;
ISInfoDocument isid(p, person);

Description

This class can be used to get the meta-information for the IS information type. This
meta-information includes the information type name, type description and also
names, types and descriptions for all the attributes of this type.

Example

1: #include <Person.h>
2:
3: IPCPartition p ("MyPartition");
4: Person person;
5: ISInfoDocument isd(p, person);
6: std::cout << "class " << isd.name() << " { // " <<

isd.description() << std::endl;
7: for (unsigned int i = 0; i < isd.attributeCount(); i++)
8: {
9: const ISInfoDocument::Attribute * attr = isd.attribute(i);
10: std::cout << "" << attr -> typeName() << (attr -> isArray() ?

"[] " : " ") << attr -> name() << "; // " << attr ->
description() << std::endl;

11: }
12: std::cout << "};" << std::endl;

Public Constructor

ISInfoDocument(const IPCPartition & p, ISInfo & info);
Constructs new ISInfoDocument object which can be used to
get description of the info information object in the p partition.

ISInfoDocument(const IPCPartition & part, const ISType & type);
Constructs new ISInfoDocument object which can be used to
get description of the type information type in the p partition.

Public Member Functions

size_t
68 Information Service User’s Gude

ISInfoDocument
attributeCount () const
Returns number of attributes for this information type.

const Attribute *
attribute (size_t N) const

Returns pointer to the object which contains description for the
Nth attribute of this information type.

const std::string &
description () const

Returns text description for this information type.

const std::string &
name () const

Returns name of this information type.

ISInfo::Status
status () const

Returns self status. Status is set during the ISInfoDocument
object construction and must be checked immediately after.
Returns ISInfo::Success if information type description has been
found. Returns ISInfo::NotFound if there is no description for the
target information type. Returns ISInfo::CommFailure if the IS
types descriptions repository is not available.
Information Service User’s Gude 69

C++ API: Class Reference
12.9 ISInfoDocument::Attribute

Synopsis

#include <is/infodocument.h>
const ISInfoDocument::Attribute * attr = isinfodoc.attribute(i);

Description

This class can be used to get the meta-information for the attributes of an IS
information type. This meta-information includes attribute name, type and
optional text describing this attribute.This class doesn’t have public constructors.
User can get a pointer to the instance of this class via the attribute method of the
ISInfoDocument class.

Example

1: #include <Person.h>
2:
3: IPCPartition p ("MyPartition");
4: Person person;
5: ISInfoDocument isd(p, person);
6: std::cout << "class " << isd.name() << " { // " <<

isd.description() << std::endl;
7: for (unsigned int i = 0; i < isd.attributeCount(); i++)
8: {
9: const ISInfoDocument::Attribute * attr = isd.attribute(i);
10: std::cout << "" << attr -> typeName()
11: << (attr -> isArray() ? "[] " : " ")
12: << attr -> name() << "; // "
13: << attr -> description() << std::endl;
14: }
15: std::cout << "};" << std::endl;

Public Member Functions

const std::string &
name () const

Returns attribute’s name.

const std::string &
description () const

Returns attribute’s text description. This might be an empty
string if description has not been provided.

const std::string &
range () const

Returns range of the possible attributes value. Range is described
by a string in a format which is specified by the OKS schema
editor.
70 Information Service User’s Gude

ISInfoDocument::Attribute
ISType::Basic
typeCode () const

Returns id of the attribute’s type.

const std::string &
typeName () const

Returns attribute’s type name.

bool
isArray () const

Returns true if attribute is an array, otherwise returns false.
Information Service User’s Gude 71

C++ API: Class Reference
12.10 ISInfoDocument::Iterator

Synopsis

#include <is/infodocument.h>
IPCPartition p ("MyPartition");
ISInfoDocument::Iterator it (p);

Description

This class allows sequential access to all the available IS meta-types.

Example

1: ISInfoDocument::Iterator it (p);
2: while (it)
3: {
4: std::cout << "class " << (*it).name() << " - " <<

(*it).description() << std::endl;
5: it++;
6: }

Public Constructor

Iterator(IPCPartition & p);
Constructs a new ISInfoDocument::Iterator instance in the p
partition.

Iterator(const Iterator & i);
Copy constructor.

Public Member Operators

Iterator &
operator=(const Iterator & i);

Copy operator.

bool
operator()();

Returns true if the current iterator’s position is valid, false
otherwise.

operator bool();
Returns true if the current iterator’s position is valid, false
otherwise.

const ISInfoDocument &
72 Information Service User’s Gude

ISInfoDocument::Iterator
operator*();
Returns reference to the ISInfoDocument object at the current
iterator’s position.

const Iterator
operator++();

Prefix increment. Advances iterator to the next position and
returns the copy of the iterator object. The iterator, which is
returned points to the new position.

const Iterator &
operator++(int);

Postfix increment. Returns copy of the iterator and advances
iterator to the next position. The iterator, which is returned
points to the old position.

const Iterator
operator--();

Prefix decrement. Moves iterator to the previous position and
returns the copy of the iterator object. The iterator, which is
returned points to the new position.

const Iterator &
operator--(int);

Postfix decrement. Returns copy of the iterator and moves
iterator to the previous position. The iterator, which is returned
points to the old position.

Public Member Functions

size_t
size();

Returns number of ISInfoDocument objects in the iterator.
Information Service User’s Gude 73

C++ API: Class Reference
12.11 ISInfoIterator

Synopsis

#include <is/infoiterator.h>
IPCPartition p("MyPartition");
ISInfoIterator it(p, "MyServer", ".*.old");

Description

This class allows sequential access to the information objects in the IS repository.

The “current item” is undefined immediately after construction - you must define it
by using operator() or some other valid operator.

The ISInfoIterator class constructor retrieves a list of information objects names
from the IS repository. Information objects values are taken from the IS only when
they are explicitly requested via the value method of the ISInfoIterator.

Example

1: #include "is/isinfo.h"
2:
3: IPCPartition p("MyPartition");
4: ISInfoIterator ii(p, "MyServer");
5:
6: cout << "Information Server MyServer has " << ii.entries() << "

information objects:" << endl;
7: while (ii()){
8: ISInfoAny isa;
9: ii.value(isa);
10: cout << ii.name() << " : " << ii.type() << " : " << isa << endl;
11: }

Public Constructors

ISInfoIterator(const IPCPartition & part, const char * sid, const
ISCriteria & criteria = ISCriteria(".*"));

 Constructs new ISInfoIterator object which enumerates the
information objects which match the criteria criteria in the sid IS
server in the part IPC partition.

Public Member Operators

bool
74 Information Service User’s Gude

ISInfoIterator
operator()();
Advances the iterator one position. Returns true if new position
is valid, false otherwise.

bool
operator++();

Advances the iterator one position. Returns true if new position
is valid, false otherwise.

bool
operator--();

Retreats the iterator to the previous position. Returns true if new
position is valid, false otherwise.

bool
operator++(int);

Advances the iterator one position. Returns true if new position
is valid, false otherwise.

bool
operator--(int);

Retreats the iterator to the previous position. Returns true if new
position is valid, false otherwise.

Public Member Functions

OWLTime
time();

Returns time of the information at the iterator’s current position.
Returns time of the Epoch (00:00:00 UTC, January 1, 1970) if the
current position is invalid.

ISType
type();

Returns type of the information at the iterator’s current position.
Returns “invalid” type if the current position is invalid. Invalid
type is a type for which comparison operator with any other type
always return false.

const char*
name();

Returns name of the information at the iterator’s current
position. Returns 0 if current position is invalid.

ISInfo::Status
value(ISInfo & info);

Puts the value of the information at the iterator’s current
position to the info object and returns ISInfo::Success. If type of
the info object is not the same as type of the information object at
the current iterator position, this function returns
ISInfo::IncompatibleType. May also return ISInfo::CommFailure if
the IS repository is not available anymore or
ISInfo::InvalidExpression if iterator’s current position is not valid.

void
Information Service User’s Gude 75

C++ API: Class Reference
reset();
Reset the iterator to the state it had immediately after
construction.

size_t
entries();

Returns the number of information objects in the iterator.
76 Information Service User’s Gude

ISInfoProvider
12.12 ISInfoProvider

Synopsis

#include <is/infoprovider.h>
ISInfoProvider::instance().addCommandListener(&lst);

Description

This class implements a singleton, which is used to activate and deactivate user
specific command listeners. This class has no public constructors. The instance of
this class can be retrieved via the static ISInfoProvider::instance() function.

Example

1: class MyCommandListener : public ISCommandListener
2: {
3: public:
4: void command(const std::string & name, const std::string &

cmd)
5: {
6: std::cout << "MyCommandListener:: command '" << cmd
7: << "' received for the '" << name << "' info" <<

std::endl;
8: }
9: };

10:
11: MyCommandListener lst;
12:
13: ISInfoProvider::instance().addCommandListener(&lst);

Public Member Functions

void
addCommandListener (ISCommandListener * lst);

Activate the lst listener. Activation means that this listener will
receive the commands, which have been sent to the information
objects, created by the current process (i.e. process, which this
listener belongs to).

void
removeCommandListener (ISCommandListener * lst);

Deactivate the lst listener. Deactivation means that this listener
will not receive the commands anymore.

Public Static Function

ISInfoProvider &
Information Service User’s Gude 77

C++ API: Class Reference
instance ();
Returns the reference to the ISInfoProvider’s instance. There is
always single instance of this class per any process.
78 Information Service User’s Gude

ISInfoReceiver
12.13 ISInfoReceiver

Base Classes

IPCServer

Synopsis

#include <is/inforeceiver.h>
IPCPartition p ("MyPartition");
ISInfoReceiver isir(p);

Description

This class provides the main interface for the subscriptions to the IS repository. By
using the methods of this class an application can subscribe for the changes in the
IS repository or remove previously created subscriptions.

Example

1: void callback1(ISCallbackInfo * isc){
2: ISInfoInt isi;
3:
4: if (isc->type() == isi.type()){
5: isc->value(isi);
6: cout << isc->name() << " : " << isi << endl;
7: }
8: else
9: cout << isc->name() << " has unknown type " << isc->type() <<

endl;
10: }
11:
12: void callback2(ISCallbackInfo * isc){
13: ISInfoAny isa;
14: isc->value(isa);
15: cout << isc->name() << " has type " << isc->type() << endl;
16: cout << " and value : " << isa << endl;
17: }
18:
19: void main(void){
20: IPCPartition p;
21: ISInfoReceiver ir(p);
22: cerr << ir.subscribe("MyServer.DeviceVoltage", callback1) <<

endl;
23: cerr << ir.subscribe("MyServer", "Device.*", callback2) <<

endl;
24: ir.run();
25: }

Public Constructor
Information Service User’s Gude 79

C++ API: Class Reference
ISInfoReceiver();
Constructs new ISInfoReceiver object which can be used for
access to the IS repository in the default IPC partition.

ISInfoReceiver(const IPCPartition & part);
Constructs new ISInfoReceiver object which can be used for
access to the IS repository in the part IPC partition.

Public Member Functions

const IPCPartition &
partition();

Returns the partition in which this instance of the
ISInfoReceiver has been created.

ISInfo::Status
subscribe(const char * name, ISCallbackInfo::Callback callback, void*
param = 0);

Sets user callback that will be called each time the value of the
information object associated with the name name is changed.
The callback is a user function that will be called, param is the
user parameter that will be passed to this function. On success
returns ISInfo::Success. Returns ISInfo::CommFailure if the IS
repository is not available. Returns ISInfo::AlreadyExist in case
the same subscription has been already done via this instance of
the ISInfoReceiver.

ISInfo::Status
subscribe(const char * name, ISCallbackEvent::Callback callback, void*
param = 0);

Sets user callback that will be called each time the value of the
information object associated with the name name is changed.
The object value will not transported as part of the callback
message. The callback is a user function that will be called, param
is the user parameter that will be passed to this function. On
success returns ISInfo::Success. Returns ISInfo::CommFailure if the
IS repository is not available. Returns ISInfo::AlreadyExist in case
the same subscription has been already done via this instance of
the ISInfoReceiver.

ISInfo::Status
subscribe(const char * server_name, const ISCriteria & criteria,
ISCallbackInfo::Callback callback, void* param = 0);

Sets user callback for the server_name IS server. The callback
function will be invoked each time the information objects,
which match the criteria criteria are changed. The param is the
user parameter that will be passed to the callback function. On
success returns ISInfo::Success. Returns ISInfo::CommFailure if the
IS repository is not available. Returns ISInfo::AlreadyExist in case
the same subscription has been already done via this instance of
the ISInfoReceiver.

ISInfo::Status
subscribe(const char * server_name, const ISCriteria & criteria,
80 Information Service User’s Gude

ISInfoReceiver
ISCallbackEvent::Callback callback, void* param = 0);
Sets user callback for the server_name IS server. The callback
function will be invoked each time the information objects,
which match the criteria criteria are changed. The object value
will not transported as part of the callback message. The param
is the user parameter that will be passed to the callback function.
On success returns ISInfo::Success. Returns ISInfo::CommFailure if
the IS repository is not available. Returns ISInfo::AlreadyExist in
case the same subscription has been already done via this
instance of the ISInfoReceiver.

ISInfo::Status
unsubscribe(const char * name);

Removes subscription which has been previously done for the
information object associated with the name name. On success
returns ISInfo::Success. Returns ISInfo::NotFound if the
subscription has not been done or has been already removed.
Returns ISInfo::CommFailure if the IS repository is not available.

ISInfo::Status
unsubscribe(const char * server_name, const char * regexp);

Removes the subscription which has been previously done using
the regexp regular expression to the server_name IS server. On
success returns ISInfo::Success. Returns ISInfo::CommFailure if the
IS repository is not available. Returns ISInfo::NotFound if the
subscription has not been done or has been already removed.

Inherited Public Member Functions

void
run();

Inherited from the IPCServer class. This method blocks the
current thread of execution until the stop method of the same
ISInfoReceiver instance is called.

void
stop();

Inherited from the IPCServer class. Unblock the thread which
has been blocked by the run method of the same ISInfoReceiver
instance.
Information Service User’s Gude 81

C++ API: Class Reference
12.14 ISInfoT<T>

Base Classes

ISInfo

Synopsis

#include <is/infoT.h>
ISInfoInt ii;
ISInfoFloat if;

Description

The IS C++ API defines information classes for all the basic C++ types. All these
classes are produced from the ISInfoT<T> template class and therefore have the
same set of operators and methods. These classes are defined as:

typedef ISInfoT<char> ISInfoChar;
typedef ISInfoT<short> ISInfoShort;
typedef ISInfoT<int> ISInfoInt;
typedef ISInfoT<long> ISInfoLong;
typedef ISInfoT<unsigned char> ISInfoUnsignedChar;
typedef ISInfoT<unsigned short> ISInfoUnsignedShort;
typedef ISInfoT<unsigned int> ISInfoUnsignedInt;
typedef ISInfoT<unsigned long> ISInfoUnsignedLong;
typedef ISInfoT<float> ISInfoFloat;
typedef ISInfoT<double> ISInfoDouble;
typedef ISInfoT<std::string> ISInfoString;

Example

1: #include <is/ISInfoT.h>
2:
3: IPCPartition partition(“MyPartition“);
4: ISInfoDictionary dict(partitition);
5:
6: ISInfoInt voltage(220);
7: dict.insert("MyServer.DeviceVoltage", voltage);
8:
9: voltage = 360;
10: dict.update("MyServer.DeviceVoltage", voltage);

Public Constructor

ISInfoT<T>();
Constructs new ISInfoT object. Doesn’t initialize the data this
object is holding.
82 Information Service User’s Gude

ISInfoT<T>
ISInfoT(const T & val);
Constructs new ISInfoT object. Set initial value of the data this
object is holding to val.

Public Member Operators

ISInfoT & operator=(const T & data)
 Assignment operator. Copies the value of data to self. Returns a
reference to self.

operator const T & () const;
 Type conversion operator. Provides access to the information’s
data as a value of type T.

Public Member Functions

void
setValue(const T & data);

Sets the information value to data.

const T &
getValue() const;

Returns the information value.
Information Service User’s Gude 83

C++ API: Class Reference
12.15 ISNamedInfo

Base Classes

ISInfo

Synopsis

#include <is/namedinfo.h>
class MyInfo: public ISNamedInfo { ... };

Description

This is an abstract class that can be used as base class for a user-defined information
types. The difference from the ISInfo class is that the ISNamedInfo defines a
number of public methods which developer can use to publish this object in the IS
repository, to update it or to remove from the IS. In another words, this class
combines features provided by the ISInfo and ISInfoDictionary classes.

Example

1: class PersonNamed: public ISNamedInfo {
2: public:
3: std::string name;
4: unsigned int age;
5:
6: PersonNamed(const IPCPartition & p, const char * name)
7: : ISNamedInfo(partition, name, "Person")
8: { ; }
9:
10: void command(const std::string & cmd) {
11: std::cout << cmd << " command has been received" <<

std::endl;
12: }
13:
14: void publishGuts(ISostream & out){
15: out << name << age;
16: }
17:
18: void refreshGuts(ISistream & in){
19: in >> name >> age;
20: }
21: };
22:
23: void main()
24: {
25: IPCPartition partition(“MyPartition“);
26:
27: PersonNamed person(partition, "MyServer.Person1");
28: person.name = “Jone”;
29: person.sex = Male;
30: person.birth_date = OWLDate(“24/09/83”);
31: person.checkin();
32:
84 Information Service User’s Gude

ISNamedInfo
33: person.name("MyServer.Person2"); // Set new IS repository ID
34: person.name = “Jone Smith;
35: person.checkin();
36: }

Protected Constructor

ISNamedInfo(const IPCPartition & part, const char * name, const char *
type_name = ISType::Unknown);

Constructs an IS information object. The part is a partition in
which the IS repository will be used. The name is the information
object name that will be used to identify this object in the IS. The
type_name defines the type name of this information object.

Virtual Member Functions

virtual void
command(const std::string & cmd);

This function is called when the command to provider, which
published this information object, has been sent. The cmd
parameter is the command, which was sent. It’s up to
implementation of a particular information class what to do in
response to this command.

virtual void
publishGuts(ISostream & out);

Inherited from the ISInfo. Writes an information object’s state to
the IS output stream. User-defined class must implement this
method by writing all class’ attributes to the out stream.

virtual void
refreshGuts(ISistream & in);

Inherited from the ISInfo. Reads an information object’s state
from the IS input stream. User-defined class must implement this
method by reading all class’ attributes from the in stream.

Public Member Functions

ISType&
type();

Inherited from the ISInfo. Returns reference to the ISType class
that represents the type of the IS information. This type can be
used for comparison and also for accessing the IS type
description.

OWLTime&
time();

Inherited from the ISInfo. Returns time of the last information
update. For the just created information returns creation time.
For the definition of the OWLTime class see [12].
Information Service User’s Gude 85

C++ API: Class Reference
ISInfo::Status
checkin()

Inserts this information object into the IS repository if it was not
there already, otherwise updates the object in the IS. The method
uses the name defined at the object construction time as the
information name in the IS repository. Returns
ISInfo::CommFailure if the IS repository is not available.

This method is a mixture of the insert and update methods of the
ISInfoDictionary class.

ISInfo::Status
checkout()

The method uses the name defined at the object construction
time as the information name in the IS repository. If the
information object with this name exists already in the IS
repository, this method updates the attributes of the object
accordingly to what is in the IS and returns ISInfo::Success.
Otherwise, returns ISInfo::NotFound and doesn’t change the
current object. Returns ISInfo::CommFailure if the IS repository is
not available.

The ISNamedInfo derived object must have the same type as the
corresponding information object in the IS. Otherwise this
function returns ISInfo::IncompatibleType and doesn’t change the
current object.

This method is an equivalent to the findValue method of the
ISInfoDictionary.

ISInfo::Status
remove()

The method uses the name defined at the object construction
time as the information name in the IS repository. If the
information object with this name exists already in the IS
repository, this method removes this information from the IS and
returns ISInfo::Success. Returns ISInfo::NotFound if there is no
such information object in the IS repository. Returns
ISInfo::CommFailure if the IS repository is not available.

This method is an equivalent to the remove method of the
ISInfoDictionary.

bool
isExist()

The method uses the name defined at the object construction
time as the information name in the IS repository. If the
information object with this name exists already in the IS
repository, this method returns true. Returns false if the IS
repository is not available or information object does not exist in
it.

This method is an equivalent to the contains method of the
ISInfoDictionary.

const char *
name()

Returns the IS information name of this object.
86 Information Service User’s Gude

ISNamedInfo
void
name (const char * name)

Assign the name IS information identifier to this object. This new
name will be used by all the other methods of this class instead
of the name that has been defined at the object construction time.
Information Service User’s Gude 87

C++ API: Class Reference
12.16 ISServerIterator

Base Classes

IPCServerIterator

Synopsis

#include <is/serveriterator.h>
IPCPartiiton p("MyPartition");
ISServerIterator it(p);

Description

This class enumerates IS servers for the IS repository in a particular partition. It
inherits from the IPCServerIterator class and has the same functionality.

The “current item” is undefined immediately after construction - one must define it
by using operator() or some other valid operator.

Example

1: IPCPartition p("MyPartition");
2: ISServerIterator ii(p);
3: std::cout << "MyPartition has " << ii.entries() << " IS servers :

" << std::endl;
4: while (ii())
5: std::cout << ii.name() << std::endl;

Public Constructors

ISServerIterator();
Constructs new ISServerIterator object which enumerates all the
servers for the IS repository in the default IPC partition.

ISServerIterator(const IPCPartition & part);
Constructs new ISServerIterator object which enumerates all the
servers for the IS repository in the part IPC partition.

Public Member Operators

bool
88 Information Service User’s Gude

ISServerIterator
operator()();
Inherited from the IPCServerIterator class. Advances the iterator
one position. Returns true if new position is valid, false
otherwise.

bool
operator++();

Inherited from the IPCServerIterator class. Advances the iterator
one position. Returns true if new position is valid, false
otherwise.

bool
operator--();

Inherited from the IPCServerIterator class. Retreats the iterator
to the previous position. Returns true if new position is valid,
false otherwise.

bool
operator++(int);

Inherited from the IPCServerIterator class. Advances the iterator
one position. Returns true if new position is valid, false
otherwise.

bool
operator--(int);

Inherited from the IPCServerIterator class. Retreats the iterator
to the previous position. Returns true if new position is valid,
false otherwise.you

Public Member Functions

const char *
name();

Inherited from the IPCServerIterator class. Returns the name of
the IS server at the iterator’s current position.

void
reset();

Inherited from the IPCServerIterator class. Reset the iterator to
the state it had immediately after construction.

size_t
entries();

Inherited from the IPCServerIterator class. Returns the number
of the IS servers in the iterator.
Information Service User’s Gude 89

C++ API: Class Reference
12.17 ISType

Synopsis

#include <is/type.h>
IPCPartition p("MyPartition");
ISInfoIterator ii(p, "MyServer");
while (ii())
 cout << ii.name() << " : " << ii.type() << endl;

Description

This class identifies type of the information objects. The objects of this class should
not be created by user. They are returned by several functions of the IS API and can
be used for type comparison only.

Example

1: void callback(ISCallbackInfo * isc){
2: ISInfoInt isi;
3: if (isc->type() == isi.type()){
4: isc->value(isi);
5: cout << isc->name() << " " << isi << endl;
6: }
7: else
8: cout << isc->name() << " has " << isc->type() << " type" <<

endl;
9: }

Enumeration

enum Basic{ Error = 0,Boolean, S8, U8, S16, U16, S32, U32, Float,
Double, String, Date, Time };

This enumeration contains identifiers for all the basic types
supported by the IS. The value of this type is returned for
example by the getAttributeType method if the ISInfoAny class.

Public Constructors

ISType ();
Constructs the new ISType object. This object will be of “invalid”
type. “Invalid” type is a type for which comparison operator
with any other type always return false. This type can be used to
get the type of an information object in the IS repository via the
findType method of the ISInfoDictionary class.
90 Information Service User’s Gude

ISType
ISType (const ISType &);
Copy constructor.

Public Member Operators

ISType & operator=(const ISType& type);
Assignment operator. Copies a value of type to self. Returns a
reference to self.

bool
operator==(const ISType& type) const;

Comparison operator. Returns true if type and self are identical,
otherwise returns false.

bool
operator!=(const ISType& type) const;

 Comparison operator. Returns false if type and self are identical,
otherwise returns true.

ISType
operator!() const;

Constructs and returns the new type object, which is compatible
with any other type but the original one.

ISType
operator~() const;

Constructs and returns the new type object, which is compatible
with the original type as well ass with all the types, which inherit
the original type.

Public Member Functions

bool
compatibleWith(const ISType & type) const;

Returns true if the type type has the same structure (i.e. types
and order of the attributes) as the current type. Returns false
otherwise.

size_t
entries () const;

Returns a number of attributes declared in this type.

Basic
entryType (size_t index) const;

Returns the type of the attribute declared at the index position in
the current type.

bool
entryArray (size_t index) const;

Returns true if the attribute at the index position is array. Returns
false otherwise.

bool
subTypeOf(const ISType & type) const;

Returns true if the current type inherits from the type type.
Returns false otherwise.
Information Service User’s Gude 91

C++ API: Class Reference
bool
superTypeOf(const ISType & type) const;

Returns true if the type type inherits the current type. Returns
false otherwise.

const char*
name() const;

Returns type name which has been provided to the constructor
of the ISInfo class. If type name has not been provided always
returns the ISType::Unknown constant string.

Related Global Operator

std::ostream & operator<< (std::ostream & out, ISType & ist);
Print out the name of the ist type to the standard output stream
out.

std::ostream & operator<< (std::ostream & out, ISType::Basic & ist);
Print out the name of the ist type to the standard output stream
out.
92 Information Service User’s Gude

ISistream
12.18 ISistream

Synopsis

#include <is/istream.h>
class MyInfo: public ISInfo {
refreshGuts(ISistream & in) { ... }
};

Description

This class provides an interface for updating attributes of the user-defined
information classes from the IS internal information representation. This class has
no public constructor and can not be created by the user application. The only place
where user code must utilise this class is the implementation of the refreshGuts
method in the user-defined class which inherits from the ISInfo.

Example

1: class Person: public ISInfo {
2: public:
3: std::string name;
4: unsigned int age;
5:
6: Person() : ISInfo("Person")
7: { ; }
8:
9: void publishGuts(ISostream & out){

10: out << name << age;
11: }
12:
13: void refreshGuts(ISistream & in){
14: in >> name >> age;
15: }
16: };

Public Member Operators

ISistream & operator>>(char *str)
ISistream & operator>>(unsigned char *str)

Restores a character string from the IS input stream and copies it
to the str. The str must point to the memory allocated by user
which must be large enough to receive the string.

ISistream & operator>>(char **str)
ISistream & operator>>(unsigned char **str)

Restores a character string from the IS input stream and copies it
to *str. This operator allocates the necessary amount of memory.
The user is responsible for freeing the allocated memory.

ISistream & operator>>(bool& val)
Information Service User’s Gude 93

C++ API: Class Reference
ISistream & operator>>(char& val)
ISistream & operator>>(unsigned char& val)
ISistream & operator>>(short& val)
ISistream & operator>>(unsigned short& val)
ISistream & operator>>(int& val)
ISistream & operator>>(unsigned int& val)
ISistream & operator>>(long& val)
ISistream & operator>>(unsigned long& val)
ISistream & operator>>(float& val)
ISistream & operator>>(double& val)
ISistream & operator>>(std::string& val)
ISistream & operator>>(OWLDate& val)
ISistream & operator>>(OWLTime& val)

Get the next value of one of the IS basic types from the IS input
stream and store it in the val.

Public member functions

ISistream & get(bool ** p, size_t & size);
ISistream & get(char ** p, size_t & size);
ISistream & get(unsigned char ** p, size_t & size);
ISistream & get(short ** p, size_t & size);
ISistream & get(unsigned short ** p, size_t & size);
ISistream & get(int ** p, size_t & size);
ISistream & get(unsigned int ** p, size_t & size);
ISistream & get(long ** p, size_t & size);
ISistream & get(unsigned long ** p, size_t & size);
ISistream & get(float ** p, size_t & size);
ISistream & get(double ** p, size_t & size);
ISistream & get(std::string ** p, size_t & size);
ISistream & get(OWLDate ** p, size_t & size);
ISistream & get(OWLTime ** p, size_t & size);

Read vector of values of one of the IS basic types from the IS
input stream and store them in the array beginning at *p. Store
size of the vector in the size. This function allocates the necessary
amount of memory to store the array. User is responsible for
freeing this memory.

ISistream & get(bool * const p, const size_t size);
ISistream & get(char * const p, const size_t size);
ISistream & get(unsigned char * const p, const size_t size);
ISistream & get(short * const p, const size_t size);
ISistream & get(unsigned short * const p, const size_t size);
ISistream & get(int * const p, const size_t size);
ISistream & get(unsigned int * const p, const size_t size);
ISistream & get(long * const p, const size_t size);
ISistream & get(unsigned long * const p, const size_t size);
ISistream & get(float * const p, const size_t size);
ISistream & get(double * const p, const size_t size);
ISistream & get(std::string * const p, const size_t size);
ISistream & get(OWLDate * const p, const size_t size);
ISistream & get(OWLTime * const p, const size_t size);

Read vector of not more then size values of one of the IS basic
types from the IS input stream and store them in the array
beginning at p. Array p must have enough space to store size
elements. If size is less then actual number of elements of the
array in the IS stream, only first size elements will be stored, the
others will be lost.
94 Information Service User’s Gude

ISostream
12.19 ISostream

Synopsis

#include <is/ostream.h>
class MyInfo: public ISInfo {
publishGuts(ISostream & out) { ... }
};

Description

This class provides an interface for converting attributes of the user-defined
information classes to the IS internal information representation. This class has no
public constructor and can not be created by the user application. The only place
where user code must utilise this class is the implementation of the publishGuts
method of the user-defined class which inherits from the ISInfo.

Example

1: class Person: public ISInfo {
2: public:
3: std::string name;
4: unsigned int age;
5:
6: Person() : ISInfo("Person")
7: { ; }
8:
9: void publishGuts(ISostream & out){

10: out << name << age;
11: }
12:
13: void refreshGuts(ISistream & in){
14: in >> name >> age;
15: }
16: };

Public Member Operators

ISostream & operator<<(bool val)
ISostream & operator<<(char val)
ISostream & operator<<(unsigned char val)
ISostream & operator<<(short val)
ISostream & operator<<(unsigned short val)
ISostream & operator<<(int val)
ISostream & operator<<(unsigned int val)
ISostream & operator<<(long val)
ISostream & operator<<(unsigned long val)
ISostream & operator<<(double val)
ISostream & operator<<(float val)
ISostream & operator<<(std::string & val)
ISostream & operator<<(OWLDate & val)
Information Service User’s Gude 95

C++ API: Class Reference
ISostream & operator<<(OWLTime & val)
Store value of val to the IS output stream.

ISostream & operator<<(const char * str)
ISostream & operator<<(const unsigned char * str)

Store character string pointed by str to the IS output stream.
String must be terminated by ‘\0’ character.

Public member functions

ISostream & put(const bool* p, size_t size)
ISostream & put(const char* p, size_t size)
ISostream & put(const unsigned char* p, size_t size)
ISostream & put(const short* p, size_t size)
ISostream & put(const unsigned short* p, size_t size)
ISostream & put(const int* p, size_t size)
ISostream & put(const unsigned int* p, size_t size)
ISostream & put(const long* p, size_t size)
ISostream & put(const unsigned long* p, size_t size)
ISostream & put(const float* p, size_t size)
ISostream & put(const double* p, size_t size)
ISostream & put(const std::string* p, size_t size)
ISostream & put(const OWLDate* p, size_t size)
ISostream & put(const OWLTime* p, size_t size)

 Store the vector of size elements starting at p to the IS output
stream.
96 Information Service User’s Gude

Appendix A
Rules for the IS information declaration

A.1 IS information in C++. 98

A.2 IS Information in Java 98
Information Service User’s Gude 97

Rules for the IS information declaration
A.1 IS information in C++

A.1.1 Example

1: #include <is/info.h>
2:
3: class Person: public ISInfo {
4: public:
5: enum Sex { Male, Female };
6:
7: std::vector<std::string> names;
8:
9: unsigned int age;
10: int income;
11: Sex sex;
12:
13: void publishGuts(ISostream & out){
14: out << names << age << income << sex;
15: }
16:
17: void refreshGuts(ISistream & in){
18: in >> names >> age >> income >> (int&)sex;
19: }
20: };

A.1.2 Explanation

In order to define a new information type, one must declare a new C++ class which
has to do the following:

1. Inherit either the ISInfo or the ISNamedInfo class

2. Declare all the necessary attributes. For a valid attribute types see Appendix D.

3. Implement two virtual methods declared by the ISInfo class: publishGuts and
refreshGuts. The publishGuts method must put all the attributes of the class to the
out parameter of the method. The refreshGuts method must read all the
attributes from the in parameter of the method in the same order as they have
been put to the ISostream by the publishGuts.

Caution

As you can see from the example above it is recommended to use the std::vector as
the type of the multi-value information attributes. The old style, which used C like
arrays is still supported but not recommended. It will be removed in one of the
future releases.

A.2 IS Information in Java

A.2.1 Example

1: public class Person extends is.Info {
98 Information Service User’s Gude

IS Information in Java
2: public static final int male = 0;
3: public static final int female = 1;
4: public String[] names;
5: public int age;
6: public int income;
7: public int sex;
8: public void publishGuts(is.Ostream out){
9: super.publishGuts(out);

10: out.put(names).put(age, true).put(income, false
).put(sex, true);

11: }
12: public void refreshGuts(is.Istream in){
13: super.refreshGuts(in);
14: names = in.getStringArray();
15: age = in.getInt();
16: income = in.getInt();
17: sex = getInt();
18: }
19: }

A.2.2 Explanation

In order to define a new information type, one must declare a new Java class which
has to do the following:

1. Extend either the is.Info or the is.NamedInfo class

2. Declare all the necessary attributes. For a valid attribute types see Appendix D.

3. Implement two methods declared by the is.Info class: publishGuts and
refreshGuts. The publishGuts method must put all the attributes of the class to the
out parameter of the method. The refreshGuts method must read all the
attributes from the in parameter of the method in the same order as they have
been put to the ISostream by the publishGuts.

Caution

Contrary to C++ Java doesn’t have unsigned built-in types. In order to support
compatibility between C++ and Java, the put methods of the is.Ostream class for
the byte, short and int types have one extra argument of type boolean. If this
argument is true, the first attribute will be interpreted as signed value, otherwise as
unsigned (see line 15 of the Java example).

Caution

Old Java versions did not support enumerations. The IS Java library uses the int
Java built-in type to represent enumerations. One must make sure that the integer
representation for the enumeration values is the same in C++ and Java (compare
line 5 of the C++ example and lines 3,4 of the Java example). The latest revision of
Java language (JDK 1.5) has enumerations. The new version of IS will support them
soon.

Caution

The first instruction in the publishGuts and refreshGuts implementation must be a
call the same method of the is.Info class (see lines 14 and 19 of the Java example).
Information Service User’s Gude 99

Rules for the IS information declaration
100 Information Service User’s Gude

Appendix B
C++ information classes based on the

ISInfo

B.1 Person class

This is declaration for the Person class produced by the IS generator application.
User can put his own code between the BeginUserCode and EndUserCode
comments. When the Person.h file is regenerated the code in this sections is
preserved.

1: #ifndef PERSON_H
2: #define PERSON_H
3:
4: #include <is/info.h>
5:
6: #include <owl/time.h>
7:
8: // <<BeginUserCode>>
9:

10: // <<EndUserCode>>
11: /**
12: * Describes a human person
13: *
14: * @author generated by the IS tool
15: * @version 21/02/03
16: */
17:
18: class Person: public ISInfo {
19: public:
20: enum sex_E {male, female};
21:
22: /**
23: * Person’s name
24: */
25: std::string name;
26:
27: /**
28: * Person’s date of birth
29: */
30: OWLDate birth_date;
31:
32: /**
33: * Person’s sex
34: */
35: sex_E sex;
36:
Information Service User’s Gude 101

C++ information classes based on the ISInfo
37: Person()
38: : ISInfo("Person")
39: {
40: name = "Jone";
41: sex = male;
42:
43: // <<BeginUserCode>>
44:
45: // <<EndUserCode>>
46: }
47:
48: ~Person(){
49:
50: // <<BeginUserCode>>
51:
52: // <<EndUserCode>>
53: }
54:
55: protected:
56: Person(const char * type)
57: : ISInfo(type)
58: {
59: name = "Jone";
60: sex = male;
61:
62: // <<BeginUserCode>>
63:
64: // <<EndUserCode>>
65: }
66:
67: void publishGuts(ISostream & out){
68: out << name << birth_date << (int)sex;
69: }
70:
71: void refreshGuts(ISistream & in){
72: in >> name >> birth_date >> (int&)sex;
73: }
74:
75: // <<BeginUserCode>>
76:
77: // <<EndUserCode>>
78: };
79:
80: // <<BeginUserCode>>
81:
82: // <<EndUserCode>>
83: #endif // PERSON_H

B.2 Employee class

The Employee class inherits the Person class and calls it’s publishGuts and
refreshGuts methods internally.

1: #ifndef EMPLOYEE_H
2: #define EMPLOYEE_H
3:
4: #include <Person.h>
5:
6: // <<BeginUserCode>>
7:
8: // <<EndUserCode>>
9: /**
10: * Describes a worker person
11: *
12: * @author generated by the IS tool
13: * @version 21/02/03
102 Information Service User’s Gude

Employee class
14: */
15:
16: class Employee: public Person {
17: public:
18:
19: /**
20: * Employee’s salary
21: */
22: unsigned short salary;
23:
24:
25: Employee()
26: : Person("Employee")
27: {
28: salary = 3000;
29:
30: // <<BeginUserCode>>
31:
32: // <<EndUserCode>>
33: }
34:
35: ~Employee(){
36:
37: // <<BeginUserCode>>
38:
39: // <<EndUserCode>>
40: }
41:
42: protected:
43: Employee(const char * type)
44: : Person(type)
45: {
46: salary = 3000;
47:
48: // <<BeginUserCode>>
49:
50: // <<EndUserCode>>
51: }
52:
53: void publishGuts(ISostream & out){
54: Person::publishGuts(out);
55: out << salary;
56: }
57:
58: void refreshGuts(ISistream & in){
59: Person::refreshGuts(in);
60: in >> salary;
61: }
62:
63: // <<BeginUserCode>>
64:
65: // <<EndUserCode>>
66: };
67:
68: // <<BeginUserCode>>
69:
70: // <<EndUserCode>>
71: #endif // EMPLOYEE_H
Information Service User’s Gude 103

C++ information classes based on the ISInfo
104 Information Service User’s Gude

Appendix C
C++ information classes based on the

ISNamedInfo

C.1 PersonNamed class

This is declaration for the PersonNamed class produced by the IS generator
application. User can put his own code between the BeginUserCode and
EndUserCode comments. When the PersonNamed.h file is regenerated the code in
this sections is preserved.

1: #ifndef PERSONNAMED_H
2: #define PERSONNAMED_H
3:
4: #include <is/isnamedinfo.h>
5:
6: #include <owl/time.h>
7:
8: // <<BeginUserCode>>
9:

10: // <<EndUserCode>>
11:
12: class PersonNamed: public ISNamedInfo {
13: public:
14: enum sex_E {male, female};
15:
16: std::string name;
17:
18: OWLDate birth_date;
19:
20: sex_E sex;
21:
22: PersonNamed(const IPCPartition & partition, const char *name)
23: : ISNamedInfo(partition, name, "Person")
24: {
25: this -> name = "Jone";
26: sex = male;
27:
28: // <<BeginUserCode>>
29:
30: // <<EndUserCode>>
31: }
32:
33: ~PersonNamed(){
34:
35: // <<BeginUserCode>>
36:
Information Service User’s Gude 105

C++ information classes based on the ISNamedInfo
37: // <<EndUserCode>>
38: }
39:
40: protected:
41: PersonNamed(const IPCPartition & partition, const char *

name, const char * type)
42: : ISNamedInfo(partition, name, type)
43: {
44: this -> name = "Jone";
45: sex = male;
46:
47: // <<BeginUserCode>>
48:
49: // <<EndUserCode>>
50: }
51:
52: void publishGuts(ISostream & out){
53: out << name << birth_date << (int)sex;
54: }
55:
56: void refreshGuts(ISistream & in){
57: in >> name >> birth_date >> (int&)sex;
58: }
59:
60: // <<BeginUserCode>>
61:
62: // <<EndUserCode>>
63: };
64:
65: // <<BeginUserCode>>
66:
67: // <<EndUserCode>>
68: #endif // PERSONNAMED_H

C.2 EmployeeNamed class

The EmployeeNamed class inherits the PersonNamed and calls it’s publishGuts and
refreshGuts methods internally.

1: #ifndef EMPLOYEENAMED_H
2: #define EMPLOYEENAMED_H
3:
4: #include <PersonNamed.h>
5:
6: // <<BeginUserCode>>
7:
8: // <<EndUserCode>>
9:
10: class EmployeeNamed: public PersonNamed {
11: public:
12:
13: unsigned short salary;
14:
15: EmployeeNamed(const IPCPartition & partition, const char

*name)
16: : PersonNamed(partition, name, "Employee")
17: {
18: salary = 3000;
19:
20: // <<BeginUserCode>>
21:
22: // <<EndUserCode>>
23: }
24:
25: ~EmployeeNamed(){
26:
106 Information Service User’s Gude

EmployeeNamed class
27: // <<BeginUserCode>>
28:
29: // <<EndUserCode>>
30: }
31:
32: protected:
33: EmployeeNamed(const IPCPartition & partition, const char *

name, const char * type)
34: : PersonNamed(partition, name, type)
35: {
36: salary = 3000;
37:
38: // <<BeginUserCode>>
39:
40: // <<EndUserCode>>
41: }
42:
43: void publishGuts(ISostream & out){
44: PersonNamed::publishGuts(out);
45: out << salary;
46: }
47:
48: void refreshGuts(ISistream & in){
49: PersonNamed::refreshGuts(in);
50: in >> salary;
51: }
52:
53: // <<BeginUserCode>>
54:
55: // <<EndUserCode>>
56: };
57:
58: // <<BeginUserCode>>
59:
60: // <<EndUserCode>>
61: #endif // EMPLOYEENAMED_H
Information Service User’s Gude 107

C++ information classes based on the ISNamedInfo
108 Information Service User’s Gude

Appendix D
Mapping between OKS and IS types

Table L.1 shows mapping between OKS and IS attribute types. The second and
third columns represent all the types supported by the C++ and Java IS libraries for
the information attributes definition. An information attributes can be declared as
variable of one of these types or as an array of one of them.

For the multi-value attributes the C++ generated code uses either std::vector of
corresponding type or C like array of that type. This can be chosen using the
command line parameters of the IS generator application. The Java generated code
uses the plain Java arrays for the multi-value attributes.

Table L.1 Mapping between types of the OKS attributes and IS attributes for C++
and Java programming languages.

OKS Attribute type C++ IS attribute type Java IS attribute type

bool bool boolean

s8 char byte

u8 unsigned char byte

s16 short short

u16 unsigned short short

s32 long int

u32 unsigned long int

float float float

double double double

date OWLDatea

a. OWLDate class is implemented by the OWL component of the Online Software. Docu-
mentation can be found in [12].

java.sql.Data

time OWLTimeb

b. OWLTime class is implemented by the OWL component of the Online Software. Docu-
mentation can be found in [12].

java.sql.Time

string string java.lang.String

enum enum int
Information Service User’s Gude 109

Mapping between OKS and IS types
110 Information Service User’s Gude

Bibliography

1 ATLAS TDAQ Online Software home page,
http://atlas-onlsw.web.cern.ch/Atlas-onlsw/

2 Information Service home page,
http://atddoc.cern.ch/Atlas/DaqSoft/components/is/Welcome.html

3 ATLAS TDAQ Project home page,
http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/daqtrig.html

4 Information Service for ATLAS DAQ Prototype -1,
ATLAS TDAQ Prototype -1 project technical note 31,
http://atddoc.cern.ch/Atlas/Notes/031/Note031-1.html

5 CORBA official home page,
http://www.omg.org/corba/

6 omniORB home page,
http://omniorb.sourceforge.net/

7 Inter-Language Unification home page,
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

8 JacORB home page,
http://www.jacorb.org/

9 Inter Process Communication package,
http://atddoc.cern.ch/Atlas/Notes/075/Note075-1.html

10 Chapter 2.2 of the OKS User’s Guide,
http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb/docs/oks-ug/2.0/html
/OksDocumentation.html

http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb/docs/oks-ug/2.0/pdf/
OksDocumentation.pdf

11 Remote Database Access library: Users Guide,
http://atddoc.cern.ch/Atlas/Notes/122/Note122-1.html

12 OWL component home page,
http://atddoc.cern.ch/Atlas/DaqSoft/components/owl/Welcome.html
Information Service User’s Gude 111

Bibliography
112 Information Service User’s Gude

Index

C

custom information type, 13

F

findValue, 9

I

Information naming convention, 3
ipc_server, 47
IPCPartition, 6
IS generator, 15
IS meta-type, 3
IS meta-type information, 41
IS server, 3
is_server, 47
ISCallbackInfo, 54, 55
ISInfo, 16, 60
ISInfoAny, 34, 63
ISInfoChar, 6, 82
ISInfoDictionary, 6, 65
ISInfoDocument, 38, 43, 68

Attribute, 70
Iterator, 44, 72

ISInfoDouble, 6, 82
ISInfoFloat, 6, 82
ISInfoInt, 6, 82
ISInfoIterator, 74
ISInfoLong, 6, 82

ISInfoReceiver, 25, 79
ISInfoShort, 6, 82
ISInfoString, 6, 82
ISInfoTmpl, 82
ISInfoUnsignedChar, 6, 82
ISInfoUnsignedInt, 6, 82
ISInfoUnsignedLong, 6, 82
ISInfoUnsignedShort, 6, 82
ISistream, 93
ISNamedInfo, 16, 84
ISostream, 95
ISServerIterator, 30, 31, 88
ISType, 90

P

publish information, 6

R

rdb_server, 42, 47

S

Subscribe for a single information, 24
Subscribe using regular expression, 25

T

TDAQ_IS_REPOSITORY environment
variable, 42
Document Title 113

Index
114 Document Title

	Information Service
	Outline
	Contents
	Introduction
	1.1 Overview of the Information Service
	1.1.1 Architecture
	1.1.2 Implementation

	Basic functionality
	2.1 Predefined information types
	2.2 Publishing and updating information
	2.2.1 Creating information in the IS
	2.2.2 Replace the last information value
	2.2.3 Update information using history mode

	2.3 Reading simple information
	2.3.1 Getting the last value of the information
	2.3.2 Getting information history

	User-defined information types
	3.1 Introduction
	3.2 Defining new information type
	3.3 Generating programming language declarations
	3.4 Two types of the IS information classes
	3.5 Using custom information types
	3.5.1 Using classes based on the ISInfo
	3.5.2 Using classes based on the ISNamedInfo

	Type of IS information
	4.1 Introduction
	4.2 Getting information object type
	4.3 Reading Object types from IS repository
	4.4 Information type operations

	Subscribing to the IS repository
	5.1 Introduction
	5.2 Subscribe for a single information
	5.3 Subscribe using criteria
	5.3.1 How to define criteria
	5.3.2 How to subscribe using criteria

	5.4 Subscription modes

	Browsing the IS repository
	6.1 Introduction
	6.2 Using the IS server iterator
	6.3 Using the IS information iterator
	6.4 Using extended criteria for information iterator

	Reading information with unknown structure
	7.1 Introduction
	7.2 Using ISInfoAny class to print out information
	7.3 Parsing content of the ISInfoAny object

	Sending and Receiving commands
	8.1 Introduction
	8.2 Implementing IS command listener
	8.3 Sending commands to information providers

	Reading information type description
	9.1 Introduction
	9.2 Setting up the IS meta-information repository
	9.3 Reading the IS type description
	9.4 Reading all available IS types descriptions

	Building and running IS applications
	10.1 Information Provider and Information Receiver examples
	10.1.1 Information Provider example application
	10.1.2 IS reader example application
	10.1.3 Makefiles
	10.1.4 Compiling examples

	10.2 Running IS examples
	10.3 Troubleshooting Tips
	10.3.1 IS server errors
	10.3.2 Information Provider errors
	10.3.3 Information reader errors

	IS Utilities
	11.1 Terminal applications
	11.1.1 Information listing application (is_ls)
	11.1.2 Commander application (is_cmd)
	11.1.3 Information remover application (is_rm)

	11.2 Graphical utility

	C++ API: Class Reference
	12.1 ISCallbackEvent
	12.2 ISCallbackInfo
	12.3 ISCommandListener
	12.4 ISCriteria
	12.5 ISInfo
	12.6 ISInfoAny
	12.7 ISInfoDictionary
	12.8 ISInfoDocument
	12.9 ISInfoDocument::Attribute
	12.10 ISInfoDocument::Iterator
	12.11 ISInfoIterator
	12.12 ISInfoProvider
	12.13 ISInfoReceiver
	12.14 ISInfoT<T>
	12.15 ISNamedInfo
	12.16 ISServerIterator
	12.17 ISType
	12.18 ISistream
	12.19 ISostream

	Rules for the IS information declaration
	A.1 IS information in C++
	A.1.1 Example
	A.1.2 Explanation

	A.2 IS Information in Java
	A.2.1 Example
	A.2.2 Explanation

	C++ information classes based on the ISInfo
	B.1 Person class
	B.2 Employee class

	C++ information classes based on the ISNamedInfo
	C.1 PersonNamed class
	C.2 EmployeeNamed class

	Mapping between OKS and IS types
	Bibliography
	Index

