
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

CERN database performance seminar
June 6th 2008

Welcome!
Eva Dafonte Perez, Streams
Bjørn Engsig, Scalable Application Design
Eric Grancher, RAC scalability

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

RAC scalability
f it i t i li tifor write-intensive application
experience, guidelines, PVSS

Eric Grancher
eric.grancher@cern.ch

CERN ITCERN IT

Anton Topurov
CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

anton.topurov@cern.ch
openlab, CERN IT

Outline

• Oracle RDBMS and Oracle RAC @ CERN
• RAC scalability – what, why and how?RAC scalability what, why and how?
• Real life scalability examples
• ConclusionsConclusions
• References

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Oracle databases at CERN

• 1982 : CERN starts using Oracle
• 1996: OPS on Sun SPARC Solaris1996: OPS on Sun SPARC Solaris
• 2000: Use of Linux x86 for Oracle RDBMS

• Today:
Oracle RAC for most demanding services:Oracle RAC for most demanding services:
– [IT-DM] Experiments and LHC Computing Grid

– CASTOR mass storage system
– Administrative applications (AIS)

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

– Engineering, accelerators and controls …

RAC basics

• Shared disk infrastructure, all disk devices have to be
accessible from all servers

• Shared buffer cache (with coherency!)

Clients DB Servers Storage

Linux RAC deployment example

• RAC for Administrative Services move (2006)
– 4 nodes x 4 CPUs, 16GB RAM/node

RedHat Enterprise Linux 4 / x86 64– RedHat Enterprise Linux 4 / x86_64
– Oracle RAC 10.2.0.3

C lid ti f d i i t ti li ti fi t• Consolidation of administrative applications, first:
– CERN Expenditure Tracking
– HR management, planning and follow-up as well as a self service

li tiapplication
– Computer resource allocation, central repository of information

(“foundation”)…

• Reduce number of databases, profit from HA, profit from
information sharing between the applications (same
d t b)database).

Linux RAC deployment for
administrative applications

• Use of Oracle 10g services
– One service per application OLTP workload
– One service per application batch workload
– One service per application external access

• Use of Virtual IPsUse of Virtual IPs
• Raw devices only for OCR and quorum devices
• ASM disk management (2 disk groups)
• RMAN backup to TSM

• Things became must easier and stable over time
(GC_FILES_TO_LOCKS, shared raw device volumes …) ,
good experience with consolidation on RACg p

RAC Scalability

Frits Ahlefeldt-Laurvig / http://downloadillustration.com/

RAC Scalability (1)

2 ways of scaling database performance

Upgrading the hardware (scale up)
- Expensive and inflexibleExpensive and inflexible

Adding more hardware (scale out)Adding more hardware (scale out)
- Less expensive hardware and more flexible

RAC Scalability (2)

Adding more hardware (scale out)
Pros:Pros:
- Cheap and flexible
- Getting more popularGetting more popular
- Oracle RAC is supposed to help us
Cons:Cons:
- More is not always better

Achieving desired scalability is not easy- Achieving desired scalability is not easy.

Wh ?Why?

Reason 1

• Shared disk infrastructure, all disk devices have to be
accessible from all servers

• Shared buffer cache (with coherency!)

Clients DB Servers Storage

Reason 2

• Internal complexity
• At first level, hiddenAt first level, hidden
• When performance is critical, to be understood

Reason 3

RAC internal services

• Global Enqueue Service (was DLM): manages data
blocks locking. “Single instance” : latches and g g
locks. With RAC, objects are represented as
resources protected by global locks.

• Global Cache Service: coordination for data blocks
access. « Global Resource Directory ».

Global Cache Service

• Cache coherence.
• With Oracle, block reading « current » and « consistent »

(multiple versions).
• Cache Fusion

Before 8 1 5: disk ping (get a block which is only in buffer cache on– Before 8.1.5: disk ping (get a block which is only in buffer cache on
another instance).

– >=8.1.5: instance sends a copy of the block through the interconnect
for a Consistent Read requestfor a Consistent Read request.

– >=9.0.1: instances send the block through the interconnect for
Current Read or Consistent Read requests.

Example: GRD/GCS (1/4)

Source: Pro Oracle Database 10g RAC on Linux (Dyke/Shaw)

2 has read-only copy / 1 requires block RW / Global Ressource Directory

Example: GRD/GCS (2/4)

Source: Pro Oracle Database 10g RAC on Linux (Dyke/Shaw)

Example: GRD/GCS (3/4)

Source: Pro Oracle Database 10g RAC on Linux (Dyke/Shaw)

Example: GRD/GCS (4/4)

Source: Pro Oracle Database 10g RAC on Linux (Dyke/Shaw)

« Dirty » block

Examples

2 real life RAC scalability examples

• CASTOR Name ServerCASTOR Name Server

• PVSS

CASTOR Name Server

• CASTOR
– CERN Advanced STORage managerg g
– Store physics production files and user files

• CASTOR Name Server
– Implements hierarchical view of CASTOR name space
– Multithreaded software
– Uses Oracle Database for storing files metadata

Stress Test Application

• Simple test
• MultithreadedMultithreaded
• Used with up to 40 threads
• Each thread loops 5000 times onEach thread loops 5000 times on

– Creating a file
– Checking it’s parametersg p
– Changing size of the file

• Test Made:
– Single instance vs. 2 nodes RAC
– No changes in schema and application code

Result

CNS : Single instance vs RAC

500

600

300

400

op
s/

s

100

200

o

0
1 2 5 7 10 12 14 16 20 25 30 35 40

ThreadsSingle instance
RAC, 2 instances

Analysis 1/2

Problem:Problem:
• Contention on CNS_FILE_METADATA table

Change:
• Hash partition with local PK index

Result:
10% gain, but still worse than single instance

Analysis (2/2)

• Top event:
– enq: TX - row lock contentionq
– Again on the CNS_FILE_METADATA

• Findings:
– Application logic causes row lock contention
– Table structure reorganization can’t help

F ll• Follow – up
– No simple solution

Work in progress now– Work in progress now

PVSS II

• With LHC experiments, IT-CO and IT-DM

• Commercial SCADA application
– critical for LHC and experiments

• Archiving in Oracle Database

• Out of the box performance:
100 “changes” per second100 changes per second

• Goal: achieve scalability up to

CERN 2008 - 27

150’000 changes per second = 1’500 times faster!

The Tuning Process
Si l li ti

1 run the workload

Single application on
the test system in this
case

1. run the workload,
gather ASH/AWR
information, 10046…

2. find the top
event that slows 4. modify client

code database down
the processing,
additional tracing

code, database
schema,
database code,
hardware

3 understand why time

hardware
configuration

CERN 2008 - 28

3. understand why time
is spent on this event

PVSS Tuning (1/10)

trigger on
update eventlast
… merge (…)Update eventlastval set …

Table
event
lastval

Table
events

g ()

Update eventlastval set …

events_
history

150 Clients DB Servers Storage

• Shared resource:
EVENTS_HISTORY (ELEMENT_ID, VALUE…)()

• Each client “measures” input and registers history with a
“merge” operation in the EVENTS_HISTORY table

Performance:

CERN 2008 - 29

Performance:
• 100 “changes” per second

PVSS Tuning (2/10)

Initial state observation:

• Database sessions are waiting on the clients
“SQL*Net message from client”Q g

• Use of a generic library C++/DBg y
• Individual insert (one statement per entry)
• Update of a table which keeps “latest state” throughUpdate of a table which keeps latest state through

a trigger

CERN 2008 - 30

PVSS Tuning (3/10)

Changes:
• bulk insert to a temporary table with OCCI, then call PL/SQL

to load data into history tableto load data into history table

Performance:
T• 2’000 changes per second

Event to investigate: “db file sequential read”

Table
events_
history

Temp
table

Event to investigate: db file sequential read

Event Waits Time(s) Percent Total DB Time Wait Class
awrrpt_1_5489_5490.html

y

db file sequential read 29,242 137 42.56 User I/O
enq: TX - contention 41 120 37.22 Other
CPU time 61 18.88

CERN 2008 - 31

CPU time 61 18.88
log file parallel write 1,133 19 5.81 System I/O
db file parallel write 3,951 12 3.73 System I/O

PVSS Tuning (4/10)

Changes:
• Index usage analysis and reduction
• Table structure changes. IOT.
• Replacement of merge by insert.
• Use of “direct path load”

CERN 2008 - 32

PVSS Tuning (5/10)

Performance:
• 16’000 “changes” per second
• Event to investigate: cluster related wait event

test5_rac_node1_8709_8710.html

Event Waits Time(s) Avg Wait(ms) % Total
Call Time Wait Class

gc buffer busy 27,883 728 26 31.6 Clusterg y
CPU time 369 16.0
gc current block busy 6,818 255 37 11.1 Cluster
gc current grant busy 24 370 228 9 9 9 Cluster

CERN 2008 - 33

gc current grant busy 24,370 228 9 9.9 Cluster
gc current block 2-
way 118,454 198 2 8.6 Cluster

PVSS Tuning (6/10)
ChChanges:
• Each “client” receives a unique number.
• Partitioned table.
• Use of “direct path load” to the partition, requires to specify

the partition to avoid table lock
• LMODE = 3 (row-x SX) 6 (exclusive X) --- TYPE = TM (DML enqueue)LMODE 3 (row x SX), 6 (exclusive X) TYPE TM (DML enqueue)

insert /*+ APPEND */ into ALERTHISTORYVALUES_00000001 select * from ALERTHISTORYVALUES_temp;
select l.type,l.id1,l.id2,l.lmode,l.request,o.object_name,o.subobject_name,o.object_type
from v$lock l,dba_objects o
here l sid (select sid from $m stat here ro n m 1) and o object id l id1where l.sid = (select sid from v$mystat where rownum=1) and o.object_id=l.id1;
TYPE ID1 ID2 LMODE REQUEST OBJECT_NAME SUBOBJECT_NAME OBJECT_TYPE
---- ---------- ---------- ---------- ---------- ------------------------------ --------------- ---------------
TM 86462 0 6 0 ALERTHISTORYVALUES_00000001 TABLE
TM 86466 0 3 0 ALERTHISTORYVALUES_TEMP TABLE
TO 86466 1 3 0 ALERTHISTORYVALUES_TEMP TABLE

insert /*+ APPEND */ into ALERTHISTORYVALUES_00000001 partition ("DUMMY") select * from ALERTHISTORYVALUES_temp;
select l.type,l.id1,l.id2,l.lmode,l.request,o.object_name,o.subobject_name,o.object_type
from v$lock l,dba_objects o
where l.sid = (select sid from v$mystat where rownum=1) and o.object_id=l.id1;
TYPE ID1 ID2 LMODE REQUEST OBJECT_NAME SUBOBJECT_NAME OBJECT_TYPE

CERN 2008 - 34

---- ---------- ---------- ---------- ---------- ------------------------------ --------------- ---------------
TM 86468 0 6 0 ALERTHISTORYVALUES_00000001 DUMMY TABLE PARTITION
TM 86467 0 3 0 ALERTHISTORYVALUES_00000001 TABLE
TM 86471 0 3 0 ALERTHISTORYVALUES_TEMP TABLE
TO 86471 1 3 0 ALERTHISTORYVALUES_TEMP TABLE

PVSS Tuning (7/10)
P fPerformance:
• 150’000 changes per second
• Now top event : “freezes” once upon a while

rate75000 awrrpt 2 872 873 htmlrate75000_awrrpt_2_872_873.html

Event Waits Time(s) Avg % Total Call Time Wait ClassEvent Waits Time(s) g
Wait(ms) % Total Call Time Wait Class

row cache lock 813 665 818 27.6 Concurrency

gc current multi block request 7,218 155 22 6.4 Cluster

CERN 2008 - 35

CPU time 123 5.1

log file parallel write 1,542 109 71 4.5 System I/O

undo segment extension 785,439 88 0 3.6 Configuration

PVSS Tuning (8/10)
P bl i ti tiProblem investigation:
• Link between foreground process and ASM processes
• Difficult to interpret, use of ASH report, 10046 tracep p

Problem identification:
• ASM space allocation is blocking some operationsASM space allocation is blocking some operations

Changes:
S ll ti b k d t k• Space pre-allocation, background task.

Result:
• Stable 150’000 “changes” per second.

CERN 2008 - 36

• Note:175982.1 ORA-600 Lookup Error Categories
• #0 0x000000342390b0a0 in __read_nocancel () from /lib64/tls/libpthread.so.0
• #1 … in sntpread ()
• #2 … in ntprd ()
• #3 … in nsprecv ()
• #4 … in nsrdr ()
• #5 0x00000000047191d8 in nsdo ()
• #6 0x0000000004718b3a in nsbrecv ()
• #7 0x00000000047591e0 in nioqrc ()#7 0x00000000047591e0 in nioqrc ()
• #8 0x00000000007101c3 in opikndf2 ()
• #9 0x000000000070dddb in opitsk () “OPI Oracle server functions - these are

at the top of the server stack and are called indirectly by ythe client in
order to server the client request.”

• #10 0x0000000000710f26 in opiino () “OPI Oracle server functions - these are#10 0x0000000000710f26 in opiino () OPI Oracle server functions these are
at the top of the server stack and are called indirectly by ythe client in
order to server the client request.”

• #11 0x0000000000711fe8 in opiodr ()
• #12 0x000000000070bd13 in opidrv () “OPI Oracle server functions - these are

at the top of the server stack and are called indirectly by ythe client in p y y y
order to server the client request.”

• #13 0x000000000070a1be in sou2o ()
• #14 0x00000000006d017b in opimai_real ()
• #15 0x00000000006d00cc in main ()

• #0 0x000000000384f189 in kpudpcsf_intColArrayToStream ()
• #1 0x000000000384d869 in kpudpcs_colArrayToStream ()
• #2 0x000000000388a423 in OCIDirPathColArrayToStream ()
• #3 0x0000000003953d0d in kpxsDoConvert ()
• #4 0x00000000039538a9 in kpxsFetchDriver ()p ()
• #5 0x00000000039533b0 in kpxsFetchField ()
• #6 0x00000000039530f3 in kpxsFetch ()
• #7 0x00000000031bd28b in qxxqFetch ()
• #8 0x00000000042fec60 in spefcpfa ()
• #9 0x00000000041bc669 in spefmccallstd ()
• #10 0x00000000041bb1ad in pextproc ()
• #11 0x00000000041db18c in peftrusted ()
• #12 0x00000000045e07c4 in psdexsp ()
• #13 0x0000000000716b0c in rpiswu2 ()
• #14 0x00000000045e0307 in psdextp ()
• #15 0x00000000041d75cd in pefccal ()• #15 0x00000000041d75cd in pefccal ()
• #16 0x00000000041d7088 in pefcal ()
• #17 0x000000000402942b in pevm_FCAL ()
• #18 0x0000000003ff5fb9 in pfrinstr_FCAL ()
• #19 0x0000000003feef89 in pfrrun_no_tool ()
• #20 0x0000000003fed9d2 in pfrrun ()p ()
• #21 0x000000000402af2d in plsql_run ()
• #22 0x0000000003fdb08f in peidxr_run ()
• #23 0x0000000003fdaf09 in peidxexe ()
• #24 0x0000000003fc4d60 in kkxdexe ()
• #25 0x00000000023c46f4 in kkxmpexe ()

#26 0 0000000003d8 774 i k i ()• #26 0x0000000003d8c774 in kgmexwi ()
• #27 0x0000000003d8b6c6 in kgmexec ()
• #28 0x000000000181f846 in evapls ()
• #29 0x0000000001822047 in evaopn2 ()
• #30 0x0000000001e55572 in qximeop ()
• #31 0x0000000001e919bf in qxxmeop ()

PVSS Tuning (9/10)

• Typical queries are long
• “Index clustering factor” was not good…Index clustering factor was not good…

1 1 1 1 1 1 11 1 1 6 4

CERN 2008 - 39

1 CR/DiskRead in index ->
10 CR/DiskRead for data

1 CR/DiskRead in index ->
2 CR/DiskRead for data

PVSS tuning (10/10)

• insert /*+ APPEND */ into
ALERTHISTORYVALUES_00000001 select *
from ALERTHISTORYVALUES_temp

• insert /*+ APPEND */ into
ALERTHISTORYVALUES_00000001 select *
from ALERTHISTORYVALUES tempfrom ALERTHISTORYVALUES_temp
order by ts

• CR and DiskReads divided by 4

CERN 2008 - 40

PVSS Tuning Schema

trigger on
update eventlast
… merge (…)

Table
event
lastvalUpdate eventlastval set …

Table
events

g ()

Update eventlastval set …

150 Clients DB Servers Storage

events_
history

PL/SQL:
insert /*+ APPEND */

into eventh (…)
partition

PARTITION (1)
Bulk insert into temp table

Table
events_
history

PARTITION (1)
select …

from temp
order by ts

Temp
table

Bulk insert into temp table

CERN 2008 - 41

history

With a slightly different
workload

• Changing from 150000 changes/s in one system
• To ten systems at 15000 changes/s in eachTo ten systems at 15000 changes/s in each

• Partitioned IOTs become interesting againPartitioned IOTs become interesting again
(reminder: were considered but could not work due
to contention in the “one system” model)y)

CERN 2008 - 42

PVSS Tuning Summary

Conclusion:
• from 100 changes per second to 150’000g

“changes” per second (9’000’000 per minute),
simple transactions
6 nodes RAC (d al CPU 4GB RAM each) 32• 6 nodes RAC (dual CPU, 4GB RAM each), 32
disks SATA with FCP link to host

• 6 months effort:6 months effort:
– Re-writing of part of the application with changes

interface (C++ code)
– Changes of the database code (PL/SQL)
– Schema change
– Numerous work sessions joint work with other CERN IT

CERN 2008 - 43

Numerous work sessions, joint work with other CERN IT
groups

Scalability Conclusions

• RAC is a technology that can scale write intensive
applications

• ASM / cluster filesystem / NAS allow
– a much easier deployment
– way less complexity and human error risk.way less complexity and human error risk.

• 10g RAC has improved simplicity
• Some bits of scalability are improved at every release

(mutex in 10.2.0.2)
• RAC can boost your application performance, but also

disclose the weak design points and magnify their impactdisclose the weak design points and magnify their impact
• Proper application design is the key to almost linear

scalability for a “non-read-only” application

CERN 2008 - 44

References

• “Pro Oracle Database 10g RAC on Linux”
Julian Dyke and Steve Shawy

• “Connection management in RAC” James Morle

• "RAC awareness SQL“ pythian.compy

• “ETL 10gR2 loading “ Tom Kyteg g y

• IT-DES and IT-DM group web sites http://cern.ch/it/

CERN 2008 - 45

IT DES and IT DM group web sites http://cern.ch/it/

Q&AQ&A

CERN 2008 - 46

