Welcome
Thoughts & wishlist

JéroOme LAURET,




Welcome ...

» 3rdworkshop of its kind, follow-on workshop after the successful
events at GSI (2010) and CERN (2011)

* These workshops are focused on event reconstruction and analysis
in the High Level Trigger of modern experiments, especially those
built for heavy-ion interactions by adapting the software to modern
many-core CPU/GPU computer architectures

* Working from the core-tasks from HENP communities (tracking,
analysis being the biggest task) finding a solution and working
outward

N
R
N
©
mm
o)
o
-
c
QO
-3
<
)
o
[
N
—
Xy
Q
S
=
N
c
=
~+
=3
(%]
—+
=
c
(g
o)
-
o
-
>
Q
<
Q
>
0O
o
o
%)
~
c
=
)
&
u
>
(%

* The workshop is supported by the Goethe University of Frankfurt,
Frankfurt Institute for Advanced Studies (FIAS), Hessischen
Ministerium fir Wissenschaft und Kunst, Helmholtz International
Center for FAIR (HIC for FAIR), GSI Helmholtzzentrum fir
Schwerionenforschung and the CBM experiment.

e Chairs: Prof. Kisel, Ilvan, Prof. Hoehne, Claudia, Dr. Jarp, Sverre, Dr.
Lauret, Jerome




N
R
N
(o]
mm
()
o
=
c
QU
=
<
N
©)
=
N
-
L
Q
=]
=
=4
=
=
—+
=3
(%]
!-".
—
=
—+
®
—
o
=
>
o
<
Q
=)
(@]
(0%
o
(%]
—+
c
=
[
&
u
>
(%]

Other workshops trying to address the multi-core,
parallelization problem

At this stage of maturity, we need to pass information
across ... and broaden the base ...




ACAT 2011 - not a commercial for
it (but in my view, very relevant)

* ACAT: Advanced Computing and Analysis Techniques in Physics Research

* A workshop with many interests, many fields:

* Track 1: Programming languages, software quality, IDE and User Interfaces /
Distributed and parallel computing / New architectures, many-cores /
Virtualisation / Online Monitoring and Control, HLT

* Highlights / plenary — Sverre Jarp “Where do we go from here? — The next
phase of computing in HEP”, Kate Keahey “Building an outsourcing ecosystem
for science”, Patrick Fuhrmann “NFS 4.1/pNFS, the final step”, Anar Manafov
“Computing On Demand: Analysis in the Cloud”, David De Route “SALAMI
project”

* Strong focus on cross-technology and solutions

* Not only multi-core counts but how does it fits »
with 10, Grids, Cloud, other fields data mining ... ¢}

e Lots of conclusions from there ... | (

N
R
N
(o]
mm
()
o
=
c
QU
=
<
N
©)
=
N
-
L
Q
=]
=
=4
=
=
—+
=3
(%]
!-".
—
=
—+
®
—
o
=
>
o
<
Q
=)
(@]
(0%
o
(%]
—+
c
=
[
&
u
>
(%]




What did we hear from the start?

* From Sverre - setting the moc

* Has been warning us for a while to get prepared
* The “7 dimension” of speed increase .i . . ' “

* Multiple computer nodes — embarrassingly parallel ﬁﬁ

* Multi-core — one program uses as many cores ~ :_?,‘,E/

* Multi-sockets — provides more hardware parallelism T
(but hard to program due to NUMA, Non-Uniform .
Memory Access)

* Pipelining — instruction pipelining
e Superscalar (MIMD Multiple Instructions, Multiple Data)
* Vector widths/SIMD (Single Instructions, Multiple Data)
* pseudo-dimension — hardware multi-threading
» Perhaps even an 8t : Precision — quadruple precisions and beyond ...

N
R
N
(o]
mm
()
o
=
c
QU
=
<
N
©)
=
N
-
L
Q
=]
=
=4
=
=
—+
=3
(%]
!-".
—
=
—+
®
—
o
=
>
o
<
Q
=)
(@]
(0%
o
(%]
—+
c
=
[
&
u
>
(%]

* Hardware vectors keeps growing — community not using much of it. Assumed
to be 10% at most of a machine capability — Many trying but beating one or
couple dimension only — collaborative effort across the dimensions

* Tera-Flops machine and Exa-scale coming and many architecture and
hardware believed to become tomorrow commodities (at least some of
it): Xeon, Atom, Tilera, ... CPU, GPU, ...




What are the tools? APIs?

* Vector Class helps — this comes for “free” and should (MUST) be used (SIMD)
* Many APl and approach
e Old fork() or POSIX threads methods

* OpenMP, Threading Building Blocks (TBB),
... GPU — CUDA,
... OpenCL, (lots of promises here ... whole slew of needed functionalities)
... Intel Cilk (array notations <> data parallelism, serial semantic, forward

N
s
N
Vo]
oy
D
(o
-
=
Q
-
<
N
(@]
=
1\)
-
=
Q
=)
=
=
(=
=i
—
=3
wn
'-r-
=
=
-
D
=
o
=
>
o
<
Q
>
(@)
1
(oL,
(%2
-
(=
=2
D
&
il
>
(V2]

scaling, ..) .
* Not all methods are compatible with each other 2
* thread synchronization issues ',.:
Very complex problem with many N
dimensions (hardware and APIs) ,";,;

Not only a broad set of programing talents would be needed but the
plethora of (a) API (b) architectures and devices and (c) strategies (Grid,
Cloud, serial) and hidden layers (IO, ...) tend to indicate the need for a very
broad collaborative effort and set of skills




How the efforts in the tranches
looks like ...

Sequential A

R [ [ [ TTTTITTTTTTT ITTT T T —_—.

- “Sequentiality” of a workflow (reconstruction) it
is killing everyone

* Do we have a wining strategy? Amdahl Law (oft
forgotten) is merciless in that regard.

* Even |0 can kill the whole effort — some alread ik
splitting workflows

fork()

* Lots of (heroic) efforts to speed up framework — heard factors of x4, x10, x200
* This shows inconsistent comparative measurements and metrics across efforts/experiments

*  We must learn on how to present our results consistently — chase for the largest speed up does not
help

*  %tage gain should be CAREFULLY stated (memory copy overhead, comparative to the whole
workflow) or numbers are not meaningful — we need to define a standard metric

N
R
N
©
mm
o)
o
-
c
QO
1
<
)
o
[
N
—
Xy
Q
S
=
N
c
=
~+
=3
(%]
’-'-.
—
c
(g
o)
-
o
-
>
Q
<
Q
>
0O
o
o
%)
~
c
=
)
&
u
>
(%

* Valuable investigative work— Where is this going? How to make this all work together?
* Solutions from within the same experiment used fork(), OpenCL, OpenMP, CUDA, ...
* Itis good that many are investigating diverse approach — learning phase
* However, no common code & efforts for CPU / GPU tracking.

* Alot of step back from STL, C++ types for C-like - Provocative but ...
Did we take the wrong turn with C++?

* Good mileage in software development in one hand BUT systematically
appears and presented as a show stopper to exploiting new architecture

* Feel is that we need for “a” new language?




Focus in the community

* We have enough experience in the community from all the tries and tests — we need
to broaden knowledge. Workshops, training, education, ...

* We do NOT have a global strategy across and within experiments — where are our
(your) software architects?

* Improvements over standard approach not always clear — we MUST have standard
metrics and consistent measurements to have meaningful comparisons: we need to
present and state:

* relative %tage gain, absolute %tage gain over entire workflows and ALWAYS consider the
time to copy data in/out of memory (or specify what enters in the “gain”)

* We may need to test on the same platform - is it “forward” to suggest a common test-bed
to achieve consistent comparative results?

N
R
N
©
mm
o)
o
-
c
QO
1

<
)
o
[

N
—
Xy
Q
S
=
N
c
=
~+
=3
(%]
’-".
—
c
(g
o)
-
o
-
>
Q
<
Q
>
0O
o
o
%)
~
c
o

)

&
u
>

(%

* We have to pay attention to new languages

* We MUST work together,
develop common strategies




Wish list for this workshop
What can we do?

* A very success set already — Pulling tracking interests from many experiments together.

* We have not yet achieved a common software/packages but getting there (CA package,
KFParticles, ...) - hope for a common “core” (documentation, coding standards, data structures,
interface specification, ...)

* We should (MUST) discuss the long term maintainability and availability of packages (Vc,
OpenCL, TBB?, ...) and attempt to narrow down on strategies and evaluate timelines
* ROOT: Would the ROOT team support & maintain Vc? If so, when? We all rely on ROOT and need
areliable, sustainable, long term software provisioning mechanism — what else is “cooking”?

* Intel: OpenCL — are all the standards converging? Is the OpenCL 1.2 specifications near final? Is
this the preferred way? How does Cilk fits into this? Any other “goodies” / good tips / pearl of
wisdom?

N
R
N
(o]
a
()
o
=
c
QU
-
<
N
©)
=
N
-
L
Q
=]
=
=4
=
=
—+
=3
(%]
!-".
—
=
—+
®
—
o
=
>
o
<
Q
=)
(@]
(0%
o
(%]
—+
c
=
[
&
u
>
(%]

* How to consolidate the “base” / expand / broaden the acceptance / coordinate with
other project’s development (ROOT, Geant, ...). This means that to win, we MUST

e ...achieve compromise across — yes, you may prefer “that” other package ... or “that” other
approach

e ...organize MORE workshops where we invite each other and keep each other’s informed
e An over-arching coordination may be needed (a global working group?)

* Always need to bring industry — many thanks to the representative from past and current
workshop

Hope for a great and productive workshop ... and let’s the
fun begin




