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1 Introduction

In particle physics the interactions of high speed particles along tracks in matter produce the effects

needed to observe the particles. In most applications, the well known average quantities stopping

power and range are not sufficient to describe the properties of the tracks. For a deeper understanding

detailed simulations of the collisions along particle tracks with Monte Carlo (“MC”) simulations must

be made [1].

A detailed description of the collision processes and the spectrum of energy losses must be known.

As a preliminary description, straggling functions can be considered [2]. 1 A discussion of the calcula-

tion of straggling functions can be found in [1, 2]. To calculate such functions collision cross sections

differential in energy loss (DCCS) must be known. For this note only inelastic collisions of the particles

(mass M) with electrons (mass m) in the absorber are considered [1]. Many methods to obtain inelas-

tic collision cross sections have been described. At present we believe that the description based on

the direct Coulomb interaction and on the exchange of virtual photons between the incident particles

and the absorber is plausible [5, 6]. For this method we need photon absorption cross sections.
1The functions frequently are labeled Landau functions [3]. For present purposes I want to restrict this expression to

the specific function given in [3, 4].
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Here I want to compare two methods which use different approaches for one aspect of the problem.

The first one I call the Bethe-Fano method (B-F) described in Sect. 2.1 (more details are given in

Sect. 2.3 of [6]). The second one is the Fermi-virtual-photon method (FVP) using the approximation

for the generalized oscillator strength (GOS) shown in Fig. 1. It is described in Sect. 2.2. 2

2 Methods for calculating collision cross sections

In inelastic collisions, particles with speed v = βc lose energy E in random collisions. Large energy

losses can be approximated as collisions with single electrons in the absorber, see Eq. (5). Otherwise

the binding of the electrons in the atoms (or molecules) must be taken into account. For condensed

matter, the outer electrons of large groups of atoms must be considered as a collective of electrons,

Fig. 6 in Bohr’s review [8]. 3 Associated with the energy loss E there is a momentum transfer q. In

a classical description q depends on the instantaneous velocity u of the electron in the atom [10].

The probability of the occurrence of a momentum transfer q = Ka0 for a given energy loss E is

shown in Fig. 1. For a free electron the quantity 4

Q(1 + Q/mc2) = q2/2m (1)

is equal to the energy loss E [6]. For current purposes it is useful to distinguish several domains

of energy loss E and momentum transfer q. In addition longitudinal and transverse collisions are

considered separately, Eq. 16 in [6].

2.1 Bethe-Fano method (B-F)

Fano [6] gave the equation for the collision of a particle with speed v = βc with an atom as a cross

section doubly differential in energy loss E and momentum transfer q (represented here by Q, Eq.(1)).

σ(E, Q) = kRZ [
| F (E,q) |2

Q2(1 + Q/2mc2)2
+

| βtG(E,q) |2

Q2(1 + Q/2mc2)− E2/2mc2
](1 + Q/mc2) (2)

2This method is known by many other names: Weizsaecker-Williams method, PAI, etc. The discussion given here is
based on the paper by Allison and Cobb [7] who use the expression PAI, but the label FVP is used here anyway. This
is misleading to some extent because the B-F method also uses virtual photons.

3Further details can be found in [9] and in Sect. 2.10 of Fano.
4See Sect. II.A in [15].
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Figure 1: Generalized oscillator strength f(E, K) for Si for an energy transfer E = 650 eV to the 2p-
shell electrons [2]. Solid line: calculated with Herman-Skilman potential [19], dashed line: hydrogenic
approximation [12]. The horizontal and vertical line define the FVP approximation (Sect. 2.2). The
upper limit for the integral of Eq. (10) is Q1. See Figs. 3-8 in [2] for more detail.

where kR = 2πz2e4/(mc2β2), | F (E,q) |2 represents the interaction matrix element for longitudinal

excitations, and | G(E,q) |2 represents that for transverse excitations.

2.1.1 Approximate expressions

For small particle speeds, βt � 1, and momentum transfers QM � 2mc2, a non-relativistic approxi-

mation can be used

σ(E, Q) = kR
Z

Q2
| F (E,q) |2 = kR

Z

EQ
f(E, Q) (3)

where

f(E, Q) ≡ E

Q
| F (E,q) |2 (4)

is called the generalized oscillator strength GOS [20]. 5

For free electrons the quantities E and Q are the same, and Eq. (3) can be written as the Rutherford
5In Fano’s use,

∫
f(E, 0) dE = 1.
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cross section

σR(E; β) = kR
1

E2
, kR =

z2

β2
2.54955 · 10−19 eVcm2. (5)

Since a single free electron is involved, f(E, Q)=1.

Note that q gives the change in direction of the velocity of the incident particle, but gives at best

qualitative information about the direction of the velocity of the secondary electron produced in the

collision because a fraction of q is transferred to the residual ion [16, 17].

2.1.2 Generalized oscillator strength GOS

To calculate σ(E, Q) we need to calculate first the matrix elements Fn(q) and Gn(q) given by Eq.

2 (Eq. 17 in [6]). Analytic expressions calculated with hydrogenic wavefunctions can be found in

[11, 12, 13, 14]. A comprehensive discussion is given in [15], in particular the functions f(E, Q) are

shown. A method based on the use of a Hartree-Slater central field model of the atom has been

described by Manson [19, 20]. Results from a more detailed study, using this approach, are given in

[2, 21]. Other methods to calculate f(E, Q) have been described [7, 22, 23, 24, 25]. A comprehensive

study has been made by Bote and Salvat [18]. Examples of different approximations of GOS are shown

in Fig. 1.

2.1.3 Singly differential cross sections

For many applications details about the momentum transfer q are not needed . The singly differential

cross sections (DCCS) σb(E; β) for energy losses E can then be used for the simulations

σb(E; β) =
∫ ∞

Qm

σ(E, Q) dQ (6)

where Qm = E2/(2mc2β2). Note that f(E, Q) converges to zero for large q, Fig. 1. The dependence

on particle speed is only through Qm. 6

6If the mean value of E (equivalent to the stopping power) only is needed, it can be calculated with [6, 15, 21]

M1(β) =

∫
E dE

∫ QM

Qm

σ(E, Q) dQ (7)

where Qm ∼ E2/QM , QM ∼ 2mc2β2 and the dependence on particle speed β only appears in Qm and QM . Some
calculations of M1 with the approximation of GOS given in [19] have been made [26]. I calculated stopping powers for
Al and Si with this method [21].
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From Fig. 1 it can be seen that the GOS for small K can be approximated by the value of f(E, 0),

i.e. the dipole oscillator strength DOS which is related to the optical absorption cross section σγ(E)

by [27]

σγ(E) =
πe2h

mc
f(E, 0). (8)

I am aware of only one paper in which the full calculation of σ(E; β) with the approximation of

GOS given in [19] has been made [2]. For numerical calculations it is practical to separate the integral

over Q in Eq. (6) into several parts. 7 For the B-F program used here three ranges are used, giving

the functions σ1(E; β), σ2(E; β) and σ3(E; β). A fourth function σ4(E; β) is needed to calculate the

solid state collisions.

The several parts are itemized next.

Figure 2: Solid line: first part of B-F cross section, given by Eq.(10), for βγ = 4, β ∼ 0.97. Note that
functions for greater βγ will be only slightly larger. Dashed line: corresponding part of FVP cross
section, Eq.(17). Horizontal line: Rutherford cross section for Z = 14 electrons. The functions are
multiplied by E2/kR or E2β2π/α.

7The tables of f(E,Q) used for [21] amounted to 200 MB, which was a large number on a PC in 2001.
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Figure 3: Second and third part of B-F cross section, Eqs. (11,12), solid line; corresponding part of
FVP, given by Eq.(18): dashed line. Horizontal line: Rutherford cross section for Z = 14 electrons.
The σ(E) are multiplied by E2/kR or E2β2π/α.

• For small Q, approximate f(E, Q) by f(E, 0) in Eq. (2) and then use Eq. (6) for the interval

Qm < Q < Q1

σ1(E; β) =
∫ Q1

Qm

σ(E, 0) dQ = kR
Z

E
f(E, 0)

∫ Q1

Qm

1
Q

dQ = (9)

kR
Z

E
f(E, 0) ln

Q1

Qm
= kR

Z

E
f(E, 0) ln

Q1 2mc2β2

E2
(10)

where Q1 ∼ 1 Ry. This function is a non-relativistic approximation since Q � 2mc2. It is

shown by the solid line in Fig. 2. The GOS is not needed.

• For the second range of Q, use Eq. (6) to calculate numerically σ2(E) for Q1〈Q〈∞ for E〈10

keV for Si (see Eq. 2.10 and Fig. 8 in [2]). These integrals were done numerically with the GOS

calculated with the method of [19] for the K- and L- electron shells, and with methods described

by the ORNL group for the M-shell electrons [28]. Details can be found in [2]. The function is

σ2(E) =
∫ ∞

Q1

σ(E, Q) dQ = kR
Z

E

∫ ∞

Q1

f(E, Q)
dQ

Q
(11)

The choice of fixed limits for the integral means that the integral is independent of particle

speed. σ2(E) is shown by the solid line in Fig. 3.
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Figure 4: Solid line: third part of B-F cross section, Eq. (14), for βγ = 1000; dashed line: for βγ = 4.
Third part of FVP, Eq. (16), is identical. Horizontal line: Rutherford cross section for Z = 14
electrons.

• For large values of E (fig. 2 in Fano) f(E, Q) can be approximated by a delta-function (also see

fig. 2 in [18]. The approximations given by Eq. 28 in Fano [6] for longitudinal and transverse

excitations are used for Eq. (2), now relativistic, resulting in

σ3(E) = kR
Z

E2
[

1
1 + s

+
s

1 + s
− s(1− β2)] (12)

with s = E/2mc2, and Q and E are the same. This function is an extension of σ2(E) to larger

values of E. It is shown in Fig. 3 as the extension of the solid line beyond E = 10 keV. According

to the derivation [6] the first term in the square bracket represents longitudinal excitations, the

second and third term are due to transverse excitations.

Without the separation we get

σh(E) = kR
Z

E2
[ 1 − s(1 − β2)] (13)

which corresponds to the Rutherford cross section, Fig. 3. 8

8See the paragraph above Sect. 2.5 in Fano. The practical limit for “large energy loss” E can be seen in Fig. 8 and
Eq. (3.4) in [2].
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Figure 5: Solid line: total B-F cross section, given by the sum Eq. (15) for βγ = 4. Dashed line: total
PAI cross section, Eqs.(16-18). Horizontal line: Rutherford cross section for Z = 14 electrons. The
functions are multiplied by E2/kR or E2β2π/α.

• Additional terms are needed for condensed materials [6]. They are related to the collective

excitation of many electrons by the passing particle. The dielectric constant ε(ω) is used to

describe these effects (h̄ω is equivalent to E). The expression Eq. (14) is Eq. (47) in Fano [6].

σ4(E; β) =
α

β2π

σγ(E)
EZ

ln[(1− β2ε1)2 + β4ε22 ]−1/2 +
α

β2π

1
Nh̄c

(β2 − ε1
|ε|2

)Θ

(14)

This function is given in Fig. 4 for two particle speeds.

• The total cross section differential in energy loss E is given by Eqs. (10-14)

σ5(E; β) = σ1(E; β) + {σ2(E) + σ3(E)} + σ4(E; β) (15)

It is shown by the solid line in Fig. 5.

2.2 FVP method

The approximation for the GOS used by Allison and Cobb [7] for their method of calculating σ(E; β)

is shown in Fig. 1. The GOS is represented by the horizontal line at f(E, 0) and a delta function at
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Q = E, i.e. the free electron value of Eq. (5). See the Appendix for details. The collective excitations

are represented by Eq. (16) which is the same as Eq. (14) of the B-F method.

The total cross section calculated with the FVP method [7] then is written as

σA(E) =
α

β2π

σγ(E)
EZ

ln[(1− β2ε1)2 + β4ε22]
−1/2 +

α

β2π

1
Nh̄c

(β2 − ε1
|ε|2 )Θ (16)

+
α

β2π

σγ(E)
EZ

ln
2mc2β2

E
(17)

+
α

β2π

1
E2

∫ E

0

σγ(E ′)
Z

dE ′ (18)

Eq. (16) is identical with Eq. (14). Eq. (17) is similar to Eq. (10) with the difference that Q1 is

replaced by QM = 2mc2β2. The difference between the two expressions is large, as seen in Fig. 2.

Eq. (18) is given in Fig. 3 by the dashed line. For large energy losses E it is equivalent to the

Rutherford cross section and thus is equivalent to Eq. (13), but without the term s(1−β2). The large

differences for E〈10 keV compensate those seen in Fig. 2.

The total cross section given by Eqs. (16-18) is shown by the dashed line in Fig. 5. The compen-

sation of the large differences in Figs. 2 and 3 brings σ5, Eq.(15), quite close to σA, Eqs.(16-18).

2.3 Dependence on particle speed

For large particle speeds β ∼ 1, σ1 and σh of B-F are practically constant, while σ2 is constant for

all β. Only σ4 will change considerably with γ, as seen in Fig. 4. We see in Fig. 6 that indeed the

change in σ4 is fairly large for large differences in γ, for the range of E where σ4 is large.

3 Conclusions

The approximation for the GOS shown in Fig. 1 results in the differences shown in Figs. 2 and 3. For

the total DCCS, these differences are compensated to a large extent, as seen in Fig. 5. A quantitative

description can be given by a comparison of the moments M0 =
∫

σ(E) dE and M1 =
∫

E σ(E) dE

of the DCCS. This comparison is given for Si in Table 1, derived from Table 1 in [1]. The fractional

difference δ of the most probable energy loss ∆p for a Si layer x = 8 µm is also given. It is about one
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Figure 6: Comparison of the total B-F cross sections, Eq.(14), for βγ = 4, dashed line, and βγ = 1000,
solid line.

half of the difference for M0. The difference in M0 may be too large for accurate work and should be

explored further, especially for gases. The difference for M1 is less than 1%.

Table 1. Comparison of M0, M1 and δp for B-F and FVP [1].

M0 M1

βγ B-F FVP diff% B-F FVP δ% ∆p

0.316 30.32 32.78 8.1 2443.7 2465.3 0.9 2.7
1.000 6.729 7.175 6.6 578.3 581.8 0.6 3.5
3.981 3.952 4.189 6.0 386.1 387.9 0.5 3.7

10.000 3.842 4.068 5.9 416.9 418.6 0.4 3.4
100.000 3.842 4.066 5.8 503.8 505.4 0.3 3.2
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A The GOS approximation

The approximation of GOS used in [7] can be represented in a primitive fashion as follows.

• In Eq. (9) for σ1 replace the limit Q1 by QM = E. The result is

σ(E; β) = kR
Z

E
f(E, 0) ln

2mc2β2

E
(19)

which is equal to Eq. (17). This includes a fraction of σ2 of Eq. (11). 9

• For the delta-function at QM = E stipulate that all electrons which can be excited by virtual

photons with energy E can be considered to be free electrons for which the Rutherford cross

section can be used. For Eq. (13) we then have

Zeff =
∫ E

0
f(E, 0) dE (20)

This results in Eq. (18).

As described in [7] this requirement fulfills the Bethe sum rule (Eq. 27 in Fano) 10

∫
f(E, Q) dE = 1 (21)

The difference in the DCCS seen in Fig. 5 is due to the fact that there is no expression corresponding

to Eq. (21) for the integral over Q
∫

f(E, Q)/Q dQ (22)

see Eqs. (2.11,3.4) and figure 8 in [2].

9Consider Fig. 2 in Fano. The integral over Q in Eq. (9) for the FVP method extends over the shaded area from
Qm(E, 0) = E2/EM to the dashed line Q = E, in B-F method to ∞.

10With this condition we can expect that M1 calculated with FVP will be correct within the Bethe approximation
(i.e. no shell corrections, Sect. III A in [21]).
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