[image: image3.png]NAYdUD

Technical Report GriPhyN-2002-02
www.griphyn.org
DRAFT: COMMENTS SOLICITED

Version V8 - January 20, 2002
This version of the VDL specification is a preliminary GriPhyN project draft, intended solely to gather comments from the GriPhyN project community. It reflects ideas for refinement of the VDL-0 prototype that was used at SC2001. Based on your feedback on this draft, we intend to finalize version 1 of the VDL language and revise and clarify this document accordingly. Note that VDL-1 is not yet implemented.

This is based on the original GriPhyN virtual data work describe by Deelman et al in [3] and on further discussions with a great many people, notably Ewa Deelman and David Malon. Thanks to all of you. Rick Cavanaugh and Jim Annis deserve special mention for struggling with VDL-0 and providing valuable feedback on what’s needed in VDL-1.

The GriPhyN Virtual Data System
Jens-S. Vöckler Mike Wilde Ian Foster

(voeckler@cs.uchicago.edu, wilde@mcs.anl.gov, foster@mcs.anl.gov)

Abstract

In large-scale scientific experiments, huge amounts of data are collected from simulations and scientific instruments (telescopes, colliders, climate sensors, etc). Viewed as a whole, the dataset collections of these experiments can be seen as a large database stored in a combination of flat files, relational tables, and persistent object structures. Over time, as the experiments proceed across many years, complex relationships between data objects evolve. Two capabilities that are of interest and value to such experiments are: the ability to track how every data product was derived, and the ability to create and/or re-create data products from this knowledge. Such re-creation could be used either to replace (“re-materialize”) data products that were deleted, to produce new data products which were defined but which were never created, or to create exact or equivalent replicas of data products at remote locations when the re-creation process is more efficient than the data transfer process.

We describe the architecture and schema of a virtual data system that allows us to both represent and query information about the computational procedures used to materialize data products. A prototype has been constructed, comprising a relational database schema, a virtual data access language for specifying and querying the database, and a runtime system that can execute computation schedules constructed from database queries. This prototype was successfully used to demonstrate that a complex derivation of simulated high-energy physics collision event data from the CERN CMS experiment could be described and executed using the proposed approach.

TABLE of CONTENTS

31
Overview

32
Transformations and Derivations

43
The Virtual Data Language

43.1
Defining Basic Transformations

53.2
Defining Basic Derivations

63.3
Derivation Dependencies

73.4
The Diamond DAG Example

83.5
Querying the Virtual Data Catalog

93.6
Deriving Files

93.7
Defining Compound Transformations

124
Virtual Data Catalog Services in the Data Grid Architecture

135
The VDC Schema

156
Advanced VDL Features

156.1
Execution Environments and Transformation Signatures

166.2
Augmenting the Model with Job Execution Information

176.3
Tracking the Creation of Physical Files; File Equivalence

176.4
Transformations to Represent Data Capture

176.5
Augmenting the Model with Resource Cost Information

186.6
Adding Authentication and Authorization

186.7
Generating Virtual Data Derivation Specifications from Templates and Functions

196.8
Variable Length Parameter Lists, and Flexible Sequences

206.9
Data-type Based Transformation Templates

206.10
Handling Tri-Modal Data Representation

206.11
Linking Knowledge and Metadata Searches into the Model

217
Open Issues

22APPENDIX: VDL-1 LANGUAGE DEFINITION

23Bibliography

1 Overview

We provide an overview and programmer’s guide for Version 1 of the GriPhyN Virtual Data System (GVDS). The purpose of this system is to allow for the capture and use of information concerning how data was, or can be, generated by computations. We describe, in particular:

· The GVDS virtual data catalog (VDC): a relational schema that describes entities and relationships involved in tracking the derivation of data objects.

· The GVDS virtual data language (VDL): a textual language that is used to (a) define how data objects are derived and (b) request the execution of those derivations. Thus, VDL serves as both a data definition language and data manipulation language for the VDC.

· A GVDS virtual data language interpreter (VDI): the mechanism that executes the VDL.

· VDC and VDI together comprise the GriPhyN Virtual Data System.

2 Transformations and Derivations

VDL captures and formalizes descriptions of a how a program can be invoked, and records its potential and/or actual invocations. The abstract description of how a program is to be invoked, which parameters it needs, which files it reads as input, what environment is required, etc., is called a transformation. A transformation can be invoked multiple times with specific, unique parameter values. Each invocation of a transformation with a specific set of input values and/or files is called a derivation.

Figure 1 below shows the simple relationship between transformations and derivations: each transformation can have multiple derivations associated with it; each derivation is based on a single transformation. (As we describe below, this single transformation can itself be a compound transformation that is based on other sub-transformations, much as functions can be composed of other functions.)

[image: image4.wmf]file1

trans1

file2

trans2

file3

Figure 1: Relationship between transformations and derivations.

 A derivation, which deals solely with logical file names (as defined in [2]), represents either:

1) a recipe for how to create specific logical files by invoking a transformation in the future,

2) a record of how specific logical files were produced by invoking a transformation, or

3) a recipe for how to re-create specific logical files that existed but were deleted.

In case 1, numerous derivations can be described for invocation at a later time. Such derivations can be thought of as defining “virtual data”. In case 2, derivations serve as a historical log or trace of transformations that were invoked. Case 3 is a variation of case 1. These cases are all related, as a derivation may often go through all of these states in succession.

Using terminology from programming languages, we say that a transformation defines formal arguments (i.e., “placeholders”), for which a derivation supplies actual arguments [10 – add to endnote]. A derivation describes a single invocation of a specific transformation, supplying actual arguments (strings or logical file names) for the formal arguments defined in the transformation.

Transformations and derivations can be compared and contrasted as follows:

· A transformation is like a procedure definition. A derivation is like the trace record of a procedure invocation.

· Transformations contain placeholders for logical file names. Derivations contain the actual logical file names that are required to invoke the transformation, and the actual logical file names produced by the invocation.

· Transformations can specify functions to estimate their cost of execution. Derivations contain an actual cost estimate (and, if the derivation has been already invoked, an actual cost value).

· Transformations can be composed into “compound” transformations using semantics similar to the definition of functions in a programming language. The limited composition allowed in this current version, VDL-1, permits compound transformations to be described as a directed acyclic graph
of other transformations. Derivations, however, cannot be nested or composed into compound definitions.

3 The Virtual Data Language

In this section we introduce VDL syntax by showing how it is used to represent both (a) simple transformations involving a single executable application and (b) compound transformations that are composed of multiple internal transformations.

VDL statements are interpreted by the VDL interpreter, and cause the virtual data catalog to be updated, queried, or used to perform data derivations. These updates, queries, and actions are illustrated through examples below, and will (in a future version) be described using XML.

3.1 Defining Basic Transformations

Consider the following definition of the transformation t1:

TR t1 (IN a1; OUT a2)

{

 APP /usr/bin/app3;

 CARG parg -p 500;

 CARG farg -f $a1;

 CARG xarg -x –y;

 CARG stdout $a2;

 ENV MAXMEM=100000;

}
This declaration defines the information necessary to execute a simple UNIX executable program, “app3”. Line by line, this transformation definition reads as follows:

· The TR statement assigns the transformation a name (“t1”) that derivation definitions can use to refer to it, and declares that t1 reads one input file (given the formal parameter name a1) and produces one output file (formal parameter name a2). The parameters declared in the TR header line are transformation arguments, which are (currently) restricted to be only file names. (Note that we use the terms “parameter” and “argument” interchangeably in this document.)

· The APP statement defines the absolute path name of the executable application file.

· The first three CARG statements describe how the command line arguments to app3 (as opposed to the transformation arguments to t1) are constructed. The name of each command line argument (in this case, parg, farg, and xarg) are used within the VDL to match actual command line parameter values supplied in derivation declarations to their place in the command line. The string to be placed in the command line occurs after the parameter name. For the parameter name “farg”, the sub-string “$a1” would be replaced at invocation time by the value of the actual logical file argument supplied as the first parameter by a derivation definition that invokes t1.

· The fourth CARG statement has the special name “stdout”to denoteb that the actual value of a2 would be used as the filename into which the standard output of app3 would be redirected.

· CARG values are inserted into the command line in the order in which they appear in the TR definition (except that stdin and stdout declarations are always placed at the end of the command line
). Note that the command line parameter names (such as parg, etc. in the above example) are used solely within the VDL to match and process command line arguments. These names do not show up in the construction of the actual command line.

· Finally, the ENV statement adds one variable (MAXMEM) to the environment for the execution of app3. Transformation arguments (like $a1, $a2) can be substituted into environment variable values in the same way as they can be inserted into command line argument strings.

To summarize and clarify the two types of parameters described above:

· Transformation arguments (“IN” and “OUT” lists) are the names of input files read by and output files produced by a transformation.

· Command line arguments (“CARGS”) are strings that are concatenated to form the command line of the executable described by the transformation.

· Transformation argument values can be inserted into command line arguments using the familiar shell substitution convention “$name” (formally called “interpolation” in shell language).

3.2 Defining Basic Derivations

A DV or derivation definition adds the record of one invocation of a transformation to the virtual data catalog. The DV definition specifies the actual logical files read by and produced by that invocation, by supplying logical file names for the formal filename parameters declared in the transformation. For example, to record an invocation of transformation t1 defined above, we might use:

DV t1 (run1.exp15.T1932.raw, run1.exp15.T1932.summary) {

CARG parg –p 600;

ENV MAXMEM=20000;

}

The name specified immediately after the DV keyword is the name of the transformation that the derivation invokes. Unlike transformations the names of derivations are not defined by a VDL statement, but rather are assigned internally by the catalog. Derivations can be located in the catalog by searching for them via their logical filenames (from their IN and OUT declarations) as well as other attributes (see Section Error! Reference source not found.).

The association between an actual parameter in the derivation and a formal parameter in the transformation specification is done by position. For example, in the DV statement above, parameter a1 of transformation t1 will receive the value run1.exp15.T1932.raw and a2 the value run1.exp15.T1932.summary. This derivation also overrides the default value for command line argument “parg”, using “-p 600” instead of “–p 500,” and overrides the value of the environment variable MAXMEM with 20000 instead of 100000.

Thus, the DV definition above would invoke the app3 command as:

 export MAXMEM=20000
 /usr/bin/app3 –p 600 –f run1.exp15.T1932.raw –x –y > run1.exp15.T1932.summary

Filenames listed as IN and OUT files need not necessarily be translated into parameters. For example, if the filename was determined directly by the executable through an internal definition or is dynamically determined, it might not appear on the command line even though the file is read or written by the application. (In such cases, applications that know or can detect what filenames were read and written by an application could, after the fact, create a derivation record to describe what, in fact, the application did with respect to data dependencies).

The filename insertion semantics can handle a wide variety of argument passing conventions. However, executables with argument passing conventions which are more complex than this model can describe must be executed by producing “wrapper” scripts or executables that adapt the VDL conventions to those expected by the executable. For example, applications that read the names of further input files from a “control” file can often be handled with a wrapper that accepts the filenames as command line arguments and places them in the control file before calling the actual application. In some cases, the creation of the control file itself could be described as a transformation that reads several files and produces the control file as its output
. Then the real transformation can be described as having the control file as an input.

Note that VDL deals solely with logical file names. The mapping between a logical filename and physical filename(s) is the task of the replica catalog, and is handled by Grid components such as the request planner, which combine information from both the replica catalog and the virtual data catalog in order to determine the real physical file names to use when the application programs described by transformations are actually executed.
3.3 Derivation Dependencies

The power of derivation tracking is seen most clearly in the ability to track chains of data dependencies between derivations. Consider the following two transformations, along with a derivation description based on each:

TR trans1 (IN a1; OUT a2)

{

 APP /usr/bin/app1;

 CARG stdin $a1;

 CARG stdout $a2;

}

TR trans2 (IN a1; OUT a2)

{

 APP /usr/bin/app2;

 CARG stdin $a1;

 CARG stdout $a2;

}

DR trans1 (file1, file2);

DR trans2 (file2, file3);
These definitions state that the output of the first derivation is the input to the second derivation. Thus, if neither of the two output files file2 or file3 exist, and a request is made to deliver the output file of the trans2 derivation (file3), the data dependencies recorded in the catalog inform the system that trans1 must be run before trans2, and that its output file (file2) be used as the input file for trans2. In this manner, arbitrarily complex directed acyclic execution graphs (“DAGs”) may be automatically constructed and executed in response to requests for one or more files.

3.4 The Diamond DAG Example

[image: image1.wmf]generate

f.a

findrange

findrange

f.b

f.c

analyze

f.d

Figure 2 Yourdon dataflow chart of the diamond DAG example
We illustrate the use of VDS-1 by using it to express the transformations illustrated in Figure 2 above. A number of logical files are produced as a result of this computation. These files are named f.a, f.b, f.c, and f.d in the figure. In this example DAG, a top node generate generates creates some data set to be store into file f.a. Two processes findrange each operate on disjoint subsets of the input data file f.a, publishing their results in f.b and f.c respectively. A final node analyze combines the two halves.

We use the VDL-1 statements below to populate the database by defining the three transformations generate, findrange, and analyze; and the derivations used to produce logical files f.a, f.b, f.c, and f.d.
TR generate (OUT a) {

 APP generator.exe;

 CARG stdout $a;

}

TR findrange (IN a; OUT b) {

 APP ranger.exe;

 CARG arg –i 0.0;

 CARG stdin $a;

 CARG stdout $b;

}

TR analyze (IN a, b; OUT c) {

 APP analyze.exe;

 CARG file $a $b;

 CARG stdout $c;

}

DV generate(f.a);

DV findrange(f.a,f.b) { CARG arg –i 0.5 }

DV findrange(f.a,f.c) { CARG arg –i 1.0 }

DV analyze(f.b,f.c,f.d);
Notice that the second transformation is being used twice. In order to parameterize a transformation, a derivation can override the default values of a command line argument, in this case the –i argument to findrange.

3.5 Querying the Virtual Data Catalog

A large (and readily extensible) set of search commands is provided in VDL to extract a list of derivation or transformation definitions. The search output can (optionally) be returned in the same format as the commands that could be used to re-create the matching entries (note that this will eventually be XML). A summary of VDL query commands (to be defined in more detail in a later draft) is provided here:

Search for derivations by:

· One or more input logical file name

· One or more output logical file name

· A set of input and/or output logical file names

· An exact match on input and/or output files

· A match on associated transformation name, application name, and/or input and/or output files

The output options for a search are:

· Show just the derivations matching

· For each matching derivations show all the dependent derivations necessary to provide input files (assuming no files exist).

· Show one (or more) ways to derive a specific file

· Show output as choice of: columnar summary; VDL-1 format (for re-execution); XML

Search for transformations by:

· File name matches (as for derivations)

· Transformation and Application name matches

· CARG or ENV argument matches

3.6 Deriving Files

A set of VDL functions are provided to either request that the derivations necessary to produce a set of files are executed, or, to execute a specific derivation. These primitives are defined as follows:

· get – return a file if it exists else recursively execute the derivations needed to produce the file

· derive – execute a specific derivation

Get a result, (e.g. sqrt(3)) from a file if you have it, and create and execute a derivation if you do not.

Note that these commands need to interact with, and make certain assumptions about, the replica catalog and the location of existing replicas of logical filenames.

This section must be expanded and illustrated with examples in a future revision.

3.7 Defining Compound Transformations

In the same manner as we observed in section 3.3 above, transformations can also be specified in the form of dags that describe the coordinated execution of multiple programs and the passing of data files between them. These are called “compound” transformations.

A compound transformation can be invoked in exactly the same manner as a simple transformation, with a single derivation statement. All of the internal transformation invocations within a compound transformation are tracked in the catalog, along with all of the files read by and produced by the internal transformation steps. In this manner, the system remains fully cognizant of all of the data dependencies, and arbitrary files within those dependency chains can be deleted and re-derived at a later time based on this stored knowledge.

Figure 3: Hierarchy of simple and compound transformations.

The diagram in Figure 3 shows the class hierarchy of transformations
. In words, this diagram states the following: a transformation can either be a simple transformation, or a compound transformation. A compound transformation is itself composed of references (expressed via the “use” declaration) to one or more transformations, each of which in turn are either simple or compound. Any transformation can be referred to by a compound transformation.

Consider the following example:

TR trans1 (IN a1; OUT a2)

{

 APP /usr/bin/app1;

 CARG etc;
 ENV etc;
 CARG stdin $a1;

 CARG stdout $a2;

}

TR trans2 (IN a1; OUT a2)

{

 APP /usr/bin/app2;

 CARG etc;
 ENV etc;
 CARG stdin $a1;

 CARG stdout $a2;

}

TR trans3 (IN a1, a2; OUT a3)

{

 APP /usr/bin/app3;

 CARG parg -p foo;

 CARG farg -f $a1;

 CARG xarg -x –y –o $a3;

 CARG stdout $a2;

 ENV MAXMEM=100000;

}

TR trans4 (IN a1, a2; OUT a3)

{

 COMPOUND;

 CARG etc;
 ENV etc;
 TEMP file a4 …;

 TEMP file a5 …;

 USE trans1 ($a1, $a4) {

 CARG etc;
 ENV etc;

 }

 USE trans2 ($a2, $a5) {

 CARG etc;
 ENV etc;

 }

 USE trans3 ($a4, $a5, $a3) {

 CARG etc;
 ENV etc;

 }

}
Here, trans1, trans2, and trans3 are all simple transformations that each involves the invocation of a single application program. Transformation trans4, however, is a “compound” transformation, as seen by the substitution of the keyword “compound” for the name of an application to execute
. There are some artificial parameters introduced by the “temp” keyword in the compound transformation to glue transformations together via temporary filenames (which could be discarded after their last usage).

The “use” keyword refers to a known (previously defined) transformation. Transformations referred to within a compound transformation via use keywords form a directed acyclic graph (DAG) of transformations, as indicated by the input-to-output dependencies of the logical filenames named in their parameter lists. These graphs can specify parallel execution of nested transformations to the extent permitted by data dependencies.

In all other respects, and in particular, from the point of view of its external interface, trans4 looks just like any other transformation. These semantics encapsulate the definition of transformations in a uniform way, regardless of whether the transformation is simple or compound
.

We can thus define a compound transform that in turn uses a combination of simple and compound transformations:
TR trans5 (IN a1, a2; OUT a3)

{

 COMPOUND;

 TEMP a4 <TBD>;

 USE trans1 ($a1, $a4) {

 CARG etc;
 ENV etc;
 }

 USE trans4 ($a2, $a4, $a3) {

 CARG etc;
 ENV etc;
 }

}

Note that:

· Each transformation must be defined before it can be used as nested component in a compound transformation (i.e., before it can appear in a USE declaration).

· Each transformation declaration and USE declaration defines the full interface (command line arguments, environment variables, etc) of the transformation
.

· Compound transformations define a “DAG template”.

· Simple and compound transformations are invoked in exactly the same manner by derivations.

The above example contains the “temp” phrase to declare a local temporary filename identifier. Such files are solely used for the purpose of gluing transformations by accepting the result from one transformation and providing input for another transformation.

Open Issues: Discuss this feature, the scope of the filename, clean-up mechanism and name clash avoidance strategies.

4 Virtual Data Catalog Services in the Data Grid Architecture

As Grid jobs are created and executed, their data dependencies are determined through various proposed mechanisms, most of which are themselves open research problems. These mechanisms include: explicit declaration via a VDL; transparent extraction from job control language; generation by higher level job creation interfaces such as Grid portals; or creation by monitoring and logging job execution facilities and file accesses.
Regardless of the manner in which they were determined, dependencies for derived files (of interest) are entered into the virtual data catalog. These entries can be made before the job is executed, in which case they serve as links to the information needed to generate a file, or after a job is executed, in which case they serve as a record of how to regenerate a file.

A metadata catalog (MC) describes application-level information about logical files that no general Grid execution mechanism could know or detect. This is stored in a metadata catalog, which we provide a simplified abstraction of by describing it as a table of triads: [attribute, value, lfn]. Each LFN (logical file name) can have zero or more entries in this table. Metadata is typically produced by the application itself, or by the users of the application who can, from the parameters by which a file was produced, deduce the application-level attributes of the file, or by scanning the contents of the file with various filters that can determine attributes after the fact from raw data.

A virtual data catalog (VDC) describes how to derive a specific file. This knowledge is embodied in the form of tables that describes the transformations that were executed to produce files and the parameters that were (or are to be) passed to a specific invocation of the transformation. (To this, we will likely add, as the architecture evolves, a knowledge catalog that knows how to derive—or locate—a class of files based on higher layer descriptions of the application knowledge domain, sometimes called “ontologies.”)

A replica catalog (RC) (or, equivalently from our perspective, a distributed replica location service) keeps track of all logical files of interest to Data Grid users. A replica catalog entry for a logical file may point to zero or more physical instances of the logical file.

The key architecture issues here are the linkages between these three “logical” catalog structures:

· Each logical file in the RC can be linked with zero or more attribute-value pairs in the MC.

· Each logical file in the RC can be linked with zero or one derivations.

· Each derivation in the VDC can be linked with zero or more logical files required for its derivation.

· Each derivation in the VDC can be linked with zero or more logical files that it derives.

These linkages are indicated by the 4 arrows in in Error! Reference source not found.. Note that each linkage is based on logical file names—or, in the case of a transformation, identifiers that represent logical file names.

[image: image2.wmf]

Metadata

Catalog

LFN

Attribute

Value

Replica Catalog

LFN

PFNs[]

Virtual Data Catalog

derived LFNs[]

required LFNs[]

^transformation

Figure 4: Architectural view of catalog relationships

As jobs are prepared for execution (in part by the planner), all logical files needed for a job are determined. For each logical file, zero or more physical copies may exist. The task of the planner is to determine a site at which to execute the job, and then determine how to make all the required logical files accessible to the job. For logical files of which no physical copy is currently accessible, the planner can decide to either copy a replica of the file to a place where the job can access it, or can decide to materialize a file, possible followed by a move or copy operation to make the file accessible to the job. Such decisions would be based on cost estimates of copying vs. recreating. (show pseudo-code for the overall decision-making algorithm here…)
The planner must also determine how to deal with the possible relocation of the physical files derived by a job. These derived files may need to be relocated to specific physical file storage servers, based on various policy issues.

At later points in time, storage management functions may seek to reclaim space on storage servers by removing physical copies of logical files tracked by the replica catalog. When such needs arise, the storage manager has the freedom to delete files for which other copies exists, or for which derivations are known.

Open Issues: Discuss file storage pools and rules for pool use - transient vs permanent. Discuss tempnames here – use Jens’ diagram. Do we need a micro-planner? Discuss file name choice issues – actual vs anonymous (randomly chosen) logical and physical file names.

5 The VDC Schema

This section presents a more detailed view of the VDC-design and internal representation. It may be skipped on first reading.

Figure 5, which describes the VDS-1 schema as a UML “class diagram” [ref], is a more detailed view of Figure 3. The transformation class is split into its components XFORMATION and FORMALPARAMETER. The derivation class is created from the combination of XFORMATION, FORMALPARAM and ACTUALPARAM.

Figure 5: UML representation of the VDS-1 schema

An ACTUALPARAM can be either a logical file name or some other value, such as a numerical or string value. The ACTUALPARAM value attribute captures either the logical filename or the value of a non-file parameter. Thus the LFN does not contain any attributes, as it is just a specialization of a parameter.

The METADATA table maps from (key, value) attribute pairs to LFNs. This is a many-to-many relation: each LFN can have many attributes, and multiple LFNs can have the same attribute.

Any TRANSFORMATION can be described by the executable and any number of related FORMALPARAM. A database implementation also needs to model a transformation ID.

The interrelationships among TRANSFORMATION, ACTUALPARAM, and FORMALPARAM are the most complex, and are expressed in three bilateral
relationships:

· A transformation is characterized by its parameters. The signature of the transformation includes input and output parameters, which need not be files. A transformation may have an arbitrary number of formal parameters and thus the relationship between TRANSFORMATION and FORMALPARAM is 1:N.

· A transformation may have more than one derivation, using different values for the parameters, and as a set identified by their set-identifier, usually a number that is constant for the same related actual arguments.

· The relationships from a transformation to its formal and actual parameters are not independent of each other. Each instantiation of an actual parameter maps to exactly one formal parameter describing the entry, as shown by the dashed line. On the other hand, there may exist more than one instantiation of a formal parameter for the same function in different actual parameter sets, as shown by the N:1 relationship between the two parameter classes.

An alternative and perhaps better representation of the interrelationships among the three classes would be as a single ternary association. The transformation end would have a multiplicity of one, the formal argument a multiplicity of N, and the actual argument a multiplicity of M*N. We could then view the transformation and formal arguments as one block (called, for example, “process”
) to which one or more actual parameter implementations may exist.

Regarding the notion of tracking transformation and derivation cost
: We propose this as a means of grouping multiple sets of actual parameters that reuse the same transformation template. The thought is that for similar transformations, the machine type or some kind of cost could be modeled, e.g. as additional relationship between TRANFORMATION and DERIVED.

Open Issue: reduce the confusion between LFN and parameter strings.
6 Advanced VDL Features

The features proposed in this section are ideas being considered for VDL versions 2 and beyond. We describe them here as a record of proposals for extending the power of VDL-1 that we have already developed ourselves or in discussions with GriPhyN project members and other colleagues, but that we do not feel are sufficiently mature for inclusion in the current prototype.

6.1 Execution Environments and Transformation Signatures

The transformation description needs to be augmented with as much information as is practical to capture and store concerning the nature and state of the environment in which a transformation was (or will be) executed. This information has many layers of complexity below it, extending deep into the realm of configuration management systems. A proposal for the contents of a transformation description is [ref: Deelman, Mehta].

We propose to include into the transformation description a reference to a “software execution environment” definition. This definition would enrich the description of a transformation’s signature with a description of run-time attributes such as standard environment variable settings for all applications within a project, the dynamic library environment, and the standard files and directories that are expected to be available within the environment. For example:

· All the information about how the application was built.

· All the information about what dynamic libraries were in the library search path for the executing application.

· How each of those libraries was built.

· All environment variable settings, and the names of all files directly or indirectly referenced by those environment variables.

· Hardware node descriptions and change records.

Some of this information can be represented in a relatively standard manner – for example, information about the dynamic library state seen by an executing application. The structure of deeper knowledge, however, about versions of applications and the configuration management mechanisms behind those applications, is by nature environment-specific, whereas we seek to keep the VDS as general as possible. To strike the right balance here, we expect to only embed support for, initially, the POSIX execution model, then extend it to the Windows execution model, and to provide generic linkages (for example, using environment-specific opaque name-value pairs to allow environments to associate arbitrary environment-specific data with transformations).

A similar approach to the one described above is also required to capture information about the hardware execution environment that is germane to the reproducibility of data. Such an environment is beyond our scope to describe here, but is typified by the mechanisms that are currently deployed in commercial network and systems management frameworks, which record innumerable hardware attributes of large networks, down to the levels of component types and serial numbers.

6.2 Augmenting the Model with Job Execution Information

We propose to augment the descriptions of transformations and derivations with information needed to execute programs within current Grid frameworks.

The JOB clause
defines run-time specifications for jobs to be executed, for example, DAGman parameters, ClassAd specifications to the Condor scheduling system, or RSL (resource specification language) specifications to the GRAM component of Globus. Job execution information can be supplied on the TR statement, the DV statement, or on any statement that causes derivations to execute (such as get and derive). This permits a wide range of specification power and information abstraction.

For example, specifying job parameters on the TR statement would encapsulate the knowledge of how a transformation must be executed tightly with that transformation, hiding the knowledge so that derivation specifications and derivation execution requests do not need to know or supply this level of detail. But we also may want to explore or permit the opposite direction: by deferring job specifications until the time that a derivation is executed, (and supplying the JOB clause on a get or derive statement) we make the data definitions independent of the job execution environment – a sort of deferred binding of this information. Both approaches may have a place in a virtual data Grid, depending on the diversity of execution environments present.

Job clauses could conceivably be coded in the form of nested name value pair lists (much like a ClassAds [ref: Condor; Sudharshan] or RSL [Ref: GRAM]

Site

· how it should execute

· where it should execute

· where it did execute

6.3 Tracking the Creation of Physical Files; File Equivalence

Every time a derivation is executed, actual physical files are produced (even though the derivation record itself just tracks logical file names). There may in many cases exist differences (sometimes acceptable, other times not) between different physical copies of the same logical file.

We seek a way to store and associate with every physical copy of a logical file a full record of how that copy was produced: the transformation, the job parameters used, the resources consumed, and a digest of the contents of the file (in the form of a message digest such as MD5.) This will require that we integrate with or provide linkages between the schemas of the replica catalog and the virtual data catalog.

Closely related to this concept, we further propose to develop the notion of file equivalences. For some transformations, we would provide the following optional and mutually exclusive attributes:

· each copy of a specific derived logical output file must be identical (verified or not is an option)

· derived copies need not be identical (no verification)

· derived copies need not be identical but must pass an equivalence validation test that is itself a transformation which produces no output or only logging output. This notion may be generalizable into a built-in, extensible paradigm for data product validity testing.

Open issue: store a pointer to the actual derivation used to produce a physical file name, with the physical file name record in the replica catalog? Keep the derivation immutable once its associated with any actual pfns? Can pfns be re-associated with a derivation? I think that this section proposes a high-level solution to this open issue… (mw)

Open Issue: Suggest we consider creating a derivation-execution record which describes each execution of a derivation: resources used; physical copy created. So each PFN can be traced back to the derivation that produced it. (ditto – mw)

6.4 Transformations to Represent Data Capture

Transformation descriptions can also describe raw data capture processes, which, while they are not produced by executing an application, do in fact often have associated input data files on which the raw capture was based. For example, data streaming out of a detector in high energy physics colliders is typically dependent (for interpretation and further processing) on files that describe the static geometry, the measured calibrations, and the real time conditions and settings of the detector. These files can be associated with raw data files by describing them as input files to (i.e., data dependencies of) a raw data capture “transformation”.

6.5 Augmenting the Model with Resource Cost Information

We propose to implement the following model for representing and tracking execution cost:

· Each TR will have a cost projection expression, which can be based on the values of CARGs and the sizes of dependent input files.

· Each DV can contain a cost projection

· Each DV execution record will contain an actual cost measurement for each invocation of the derivation.

The variables that will be cost-tracked could be:

resources {

start timestamp

end timestamp

cpu, io, netwk resources used

}

For resource records that represent projections, the start time will be zero, hence the end timestamp will represent the expected duration of the transformation’s execution.

The cost is currently in terms of CPU seconds, but can, in the future, be extended to cover data transfer and network I/O costs.

It is recognized as an open research problem that attributing network utilization to a specific derivation is, while potentially of great value to a Grid request planner, also a very complex problem.

6.6 Adding Authentication and Authorization

We propose to augment the virtual data model with Globus Grid Security Infrastructure (GSI) mechanisms that identify the Grid identity of entities that make requests to the virtual data system, and Community Authorization Service mechanisms that permit fine-grained policy-based control over authority to use resources to make virtual data catalog and manipulation requests.

We propose to handle issues of:

· Who is requesting catalog access or derivation execution?

· Who used what resources to do what? (logging)

· What authorization checking needs to be done?

· How does this relate to access to other catalogs and/or storage servers?

· How does resource predictions or utilization relate to policies?

6.7 Generating Virtual Data Derivation Specifications from Templates and Functions

Generators are scripting functions that can create a large number of derivations from a parametric specification (i.e., directly from the Transformation definition).

Templates could also be defined in the VDC which look like multi-stage (multi-transformation) derivations but that can be used to more easily create or specify other derivations. The introduction of templates and compound transformations calls for the introduction of the scope of connected identifiers, not just variables.

With a generator, we need to consider nested and named generation: A generator t7 calls a generator t6 in its internal loop. Thus, generators cannot be just simple macro expansions. Generators can sometimes be viewed as special cases of compound transformations, introducing the notion of nesting and lambda functions.

If we assume that each transformation, or essentially VDL itself, can be expressed as a script, then a generator can either create new derivations and/or new transformations from any scripting language. Ultimately, it must be possible to integrate scripting with VDL in such a way that they work in a mutually recursive fashion: a scripting language could invoke a VDL API that might in turn contain scripting language pieces etc.

Ideally, we seek a generator mechanism that is independent of scripting language, but which could work with today’s popular implementations: Perl, Python, TCL, and various shells.

6.8 Variable Length Parameter Lists, and Flexible Sequences

Many scientific application domains deal with data in sequences or ranges that are inherent in the nature of the domain. Two notable examples of this are data that is organized by time or by space. For example, in the LIGO experiment, all raw data is collected in “frame” files that are identified with a UTC timestamp denoting the start time and end time of the particular observation. Climate data on the other hand might be organized into volume units in the spherical coordinate system of the earth’s atmosphere, while data from an EOS system might be gathered in segments that tile regions of the earths surface.

Transformations will often be designed to process a sequence of all input files from a much larger collection that represent a specific time period, a specific 3D conic section of the atmosphere or an ocean, or a specific spherical region of the earth’s surface. Geological data might be similarly organized; bio-informatics data undoubtedly has numerous inherent notions of sequence and subsequence.

To handle such data requests, we propose to augment the model with the concept of a varying-length sequence of file names, chosen by an application-specific name generating function or meta-database lookup. The actual filenames that are part of such a sequence always need to be determined by information from either metadata databases or from the replica catalog. In most real-life applications, large data collections are often incomplete, in that a few files from any sequence can often be missing with no ill effects on large statistically based analyses.

This concept will enter into our model as follows:

· Transformations can be coded which specify a sequence of files as a single unit in their file input-output parameter lists. (This will be similar to the “var args” notion of C, but with additional flexibility in that a sequence can appear anywhere in the list
).

· The sequence will be specified as a function with an application-specific string to denote the range of the sequence. This range can have an arbitrary number of parameters (for example, two to specify a time range, or six to represent a conic of the atmosphere – min and max latitude/longitude, and min and max altitude.)

· Applications will invoke an application-specific function to convert a data range into a sequence of possible file names.

· The sequence will be processed to find the exact list of filenames, removing missing data sets.

· The application will then process the filenames using generalized iterators that know how to deal with such a file list.

Sometime filenames will give ranges, sometimes not; either way its a metadata function to map a range request onto a list of files. For example, while in LIGO the filenames themselves indicate the time range of the file, in general we can’t count on this. Therefore, we propose that the mapping from range to list of files be generalized into an application-specific function.

We expect that such a model would incorporate:

· Queries that match subranges

· Argument types as both subrange specifications and expanded subranges

· A notion of data types

6.9 Data-type Based Transformation Templates

A new idea that was recently proposed and needs further examination is that of providing datatype-based transformation templates based on the paradigm of the “Make” command – for example, to be able to specify a transformation that knows how to transform a file of type “raw event data” to type “reconstructed event data”, much like a makefile specifies a rule for translating a “.c” file into a “.o” file.

6.10 Handling Tri-Modal Data Representation

Among the GriPhyN experiments, three data representation modes are dominant: files, relational tables (in RDBMS’s) and persistent object structure (in OODBMS’s). Universal underlying data representations such as XML, which we think of as different from these three modes, and potentially as unifying them, are also being deployed.

We feel that the mechanism we have described in this document to handle file-based transformations and derivations extends quite naturally to encompass all of these modes.

For example, lets posit that in a HEP experiment, summary “TAG”

6.11 Linking Knowledge and Metadata Searches into the Model

As a final and most advanced stage of our anticipated virtual data research, we propose to develop and test higher-level knowledge-based representations of domain-specific knowledge, and create databases to represent this knowledge and provide queries based on it.

This work will be done in stages, starting with simple queries on the parameters of a collection of derivations. For example, the queries that we have proposed in the base implementation of VDL-1 provide for handling situations such as in this (greatly oversimplified) example:

Suppose a data generation process is generating a huge number of files, at very high resolution using a transformation called SQRT(x), which places a single result number into each file. Assume the process is being done for the range 1.0 to 10.0 in increments of 10^-9.

Now suppose a researcher wants to retrieve a file containing SQRT(3.0). The researcher would first query the VDC to see if a derivation-produced file containing SQRT(3) is available (app=SQRT, parameter-1=3.0). If so, the logical file name would be returned; if not, the researcher would then request that SQRT(3) be derived, and then returned.

The ultimate generalization of this trivial case is to permit the researcher to frame a query based on the attributes of the information contained in derived files. A highly sophisticated knowledge-based system would convert a query based on derived file attributes, equivalences, derivabilities, and composabilities, into a set of derivations based on cataloged transformations, and with knowledge of data that had already been produced and that which could be produced.

Create some illustrative examples of this concept. Descibe it in increasing layers of sophistication. Include some simple examples of LIGO-like slice-dice-cut-join of frame files, where the “knowledge” is mostly that of time range overlaps, and move on to several more complicated examples.

Create a clean layer separation between knowledge, metatdata, virtual catalog data, replication, and data.

Q(mdc) -> list of files

7 Open Issues

1. The virtual data access language (search, get, derive, etc) needs to be specified in much more detail.

2. A “materialization” needs to be explored, possibly with different flavors (all local, pool, etc.), that contains the job execution parameters.

3. There exist no adaptor yet for non-file objects. Possibly we can describe access to such objects with the help of URI syntax.

4. There is no good way yet to define that one file of a collection of files will be the input. Which file will be determined at run-time.

5. There is no explicit support for filenames within a file. This could readily be added. Filename patterns as arguments are much more tricky.

6. At some point soon we will need to re-assess the terminology here so that we can deal with tracking the derivation and replication of object-{sets, containers, collections, whatever}.

7. Eventually the language will be spoken between components, and thus will use XML.

8. Additional value proposition: recording IP and formulas

9. Don’t update transformations once a dependency was derived from it – it must then remain immutable. Do we want to snapshot a transformation?

10. Distribution of the catalog architecture for speed and robustness.

11. Add in a permission model – GSI etc. plus CAS – who can run what, when.

12. Derivation record should contain an execution signature.

13. Explore whether there are multiple levels of dependencies – for example, soft and hard. Hard is where data was actually read and processed to derived new data; soft if where a search was made over set X to select subset Y to process to produce Z. Z then has a hard dependencies on the files in Y but a soft dependeny on the file in X.

14. Search options that recurse down derivations are complex: its straightforward if we assume that no files exist, and show pure dependencies; its harder if we want to show what derivations need to be re-executed if we assume that some subset of the require input files exist at various sites in the Grid)

15. Deal with the issue of whether the 3 major catalogs (RC, MC, VDC) are (possibly separate) services here, and how they physically implement their logical linkages and maintain relational integrity between them.

APPENDIX: VDL-1 LANGUAGE DEFINITION

To be developed for the next revision of this document.

Bibliography

EN.REFLISTAcademic Press Dictionary of Science and Technology, http://www.harcourt.com/dictionary/browse/math.html
???What is reference 7 for?
1..N

1

Transformation

1

*

DERIVATION

TRANSFORMATION

Simple

Compound

ACTUALPARAM

FORMALPARAM

XFORMATION

METADATA

LFN

PFN

set : identifier

name : string

type : enumeration

name : string

type : enumeration

executable : string

environment : string

key

value

???

URI : string

value : string

DERIVED

*

*

*

*

LFN

REPLICA

instantiates

1..N

1..N

0..1

� Throughout this document we evolve a formal description of the entity relationships within the virtual data catalog model in an object-oriented diagramming language taken from UML. This is an abstract view of the actual implementation, which is in fact implemented in an object-relational database, but which uses only traditional relational constructs for portability.

�PAGE \# "'Page: '#'�'" ��Actually only a subset of a DAG: a tree.

�PAGE \# "'Page: '#'�'" ��We could generalize that by allowing arbitrary filedescriptor numbers to be placed in files. All FDs are unique, and placed at the end of the command line. This will exceed Condor’s current capabilities? Stdin, stdout and stderr are just special cases for FD numbers and directions: 0 in, 1 out and 2 out. A separate keyword will make this distinction easier.

�PAGE \# "'Page: '#'�'" �� Of course, if the control file also describes one ore more output files, then a more complicated solution may be called for.

�PAGE \# "'Page: '#'�'" ��So BNF would alternate between either “APP app/name” or “COMPOUND”. On the other hand, the occurrence of the “USE” keyword could also trigger compound statements. The latter leads to a more complex parser. The question becomes academic with the introduction of XML.

�PAGE \# "'Page: '#'�'" ��If we introduce now conditions and iterations (or allow recursive calls and conditions), we end up with a complete language

�PAGE \# "'Page: '#'�'" ��ITF: This is a funny example, with some params having real values (a1, a2), others “etc”. Maybe make it complete?

�PAGE \# "'Page: '#'�'" �� Its not clear that this burden is wise, or that it will remain in future versions. It may be best to only require re-iteration of the transformation arguments on the USE statement, but not the command line declarations. – Mike, the example does not repeat the signature in its USE clauses.

�PAGE \# "'Page: '#'�'" ��ITF: The following paragraph seems deceptive to me, as it implies that transformation and derivation entries are equivalent, which they are not?

�PAGE \# "'Page: '#'�'" ��It is a good model to go, but I am still not entirely sure, if it is the best way.

�PAGE \# "'Page: '#'�'" ��added, as opposed to one ternary relationship between the three classes.

�PAGE \# "'Page: '#'�'" ��or “function”

�PAGE \# "'Page: '#'�'" ��We could append the cost as relational attribute to the envisioned ternary relation.

�PAGE \# "'Page: '#'�'" �� Propose that we omit the job clause from the DV statement, and supply this type of execution-environment-specific information on statements that cause execution, such as get or derive. Or better yet: the job clause can be specified on ANY of TR, DV, or GET – each one overrides.

�PAGE \# "'Page: '#'�'" ��ITF: I am not sure I understand this. The Data Grid model that underlies our replica work is that all replicas are identical. Also, replicas are not created by transformations (are they?) but by replication operations. Or are you looking forward to a time when we might instantiate the same file multiple times in different locations, by repeated runs of the transformation?

JSV: We try to distinguish between “sufficiently equivalent” and “differing” materializations.

�PAGE \# "'Page: '#'�'" ��ITF: Seems a weird convention.

�PAGE \# "'Page: '#'�'" ��Alternative: Include lists and ranges into the language.

PAGE
21

_1072685136.doc

Metadata

Catalog

LFN

Attribute

Value

Replica Catalog

LFN

PFNs[]

Virtual Data Catalog

derived LFNs[]

required LFNs[]

^transformation

