LHC-SC2-XX-2003

LHC Grid Computing Project
Architectural Roadmap towards Distributed Analysis

An Exercise on Grid Services Domain Decomposition

	
	Document identifier:
	xxx-xxx-xx-xxxx

	
	Date:
	06/08/2003

	
	Authors:
	

	
	Editors:
	

	
	Document status:
	DRAFT v0.2

	Abstract: We decided to start from a careful analysis of one of the existing projects with the most complete functionality necessary to meet the requirements of the distributed analysis and with a substantial history of successful use. We have chosen the AliEn project for this purpose. We inspect the services provided by the AliEn Grid in order to derive general domain decomposition. Having done that, we further examine other Grid projects to see how they fit into this decomposition, what other complementary services are provided to complete the overall functionality. The aim of this analysis is to come to an architecture defined as a set of collaborating services with well-defined interfaces. The rational of this approach is that the architecture defined this way is based on the services with at least one existing and proven implementation.

	Issue
	Date
	Comment

	1.0
	06/08/2003
	First version

Content
51
Introduction

62
Requirements for distributed analysis on the Grid

73
Summary of Grid projects presented to this RTAG

73.1
PROOF

73.2
AliEn

83.3
CLARENS

93.4
DIAL

93.5
GANGA

93.6
DIRAC

114
AliEn Description

114.1
Components and Services

145
General decomposition

145.1
API and User Interface

145.1.1
API

205.1.2
User Interface

215.2
Authentication

215.2.1
Authentication Service

225.2.2
VO Administration Service

235.3
Authorisation Service

245.4
Auditing Service

255.5
Information System

265.6
Computing Elements

285.7
Storage Elements

305.8
Workload Management

345.9
Data Management

365.10
File Catalogue

385.11
Metadata Catalogue

395.12
Job Monitoring

405.13
Job Provenance

405.14
Package Manager

415.15
Grid Monitoring

Error! Bookmark not defined.6
Analysis on the Grid

Error! Bookmark not defined.6.1
ASYNCHRONOUS MODEL

Error! Bookmark not defined.6.2
SYNCHRONOUS MODEL

1 Introduction

There is a growing consensus that the next generation computational grids will be built based on the distributed Grid Services paradigm [“Physiology of the Grid”]. The emerging Grid Services technology standards elaborated by the GGF Consortium may well pave the road for these developments. But this basic technology does not define the necessary set of services that can be used as building blocks for creation of practical grids. In order to define the set of services, we need a grid architecture, which will fit these services together in a coherent way. The need for an architectural view while developing complex computational systems is recognized by virtually everybody now. However, the usual top-to-bottom approach in definition of architecture failed in many cases in the past. Therefore, we decided to take another approach.

We decided to start from a careful analysis of one of the existing projects with the most complete functionality necessary to meet the requirements of the distributed analysis and with a substantial history of successful use. We have chosen the AliEn project for this purpose. We inspect the services provided by the AliEn Grid in order to derive general domain decomposition. Having done that, we further examine other Grid projects to see how they fit into this decomposition, what other complementary services are provided to complete the overall functionality. As a result of this analysis, we come to an architecture defined as a set of collaborating services with well-defined interfaces. The rational of this approach is that the architecture defined this way is based on the services with at least one existing and proven implementation.

The further development will result in providing missing services or new service implementations that will correspond to the existing service specifications. This will allow assembling whole grid applications out of toolboxes of services with competing implementations that can be fairly compared in similar settings. We are confident that concurrent development of similar services by different development teams within the same service specification is the best way to achieve the ultimate quality of the final integrated system.

In Section 4we give a detailed description of the AliEn architecture. We provide brief descriptions of some of the projects developed for the distributed analysis in different experiments in Section3. The results of the general domain decomposition derived from the analysis of the AliEn architecture are present in Section 5. In subsequent sections we give detailed description of the identified services. We present the results of this exercise as a list of services subdivided in several groups. For each service we describe briefly its intended purpose, the possible public interface, collaborating services, existing implementations.

2 Requirements for distributed analysis on the Grid

The Grid Applications Group of SC2 undertook a detailed review of the distributed analysis requirements recently [HEPCAL-II]. In the following we give a brief summary of the analysis activity that must be supported by the functionality of the eventual Grid system. A high level scenario of the analysis activity can be summarized as the following.

A user or a group of users have an algorithm that they want to apply to a particular selection of input data in a given execution environment. The input data are selected via a query to a metadata catalogue. The selection and the algorithm are passed to a workload management system together with the specification of the execution environment. The algorithms are executed on one or many nodes. The user monitors the progress of the job execution. The results are gathered together and passed back to the owner of the job. The resulting datasets can be published in order to be accessible for other users.

The above scenario represents the analysis activity from the user perspective. However, some other actions are done behind the scene of the user interface:

· To carry out the analysis tasks users are accessing shared computing resources. To do so, they must be registered with their Virtual Organization (VO), authenticated and their actions must be authorized according to their roles within the VO;

· The user specifies the necessary execution environment (software packages, databases, system requirements, etc) and the system insures it on the execution node. In particular, the necessary environment can be installed according to the needs of a particular job;

· The execution of the user job may trigger transfers of various datasets between a user interface computer, execution nodes and storage elements. These transfers are transparent for the user.

2.1 ASYNCHRONOUS Analysis MODEL

As the first step, the analysis framework has to extract a subset of the datasets from the virtual file catalogue using metadata conditions provided by the user. The next and the most difficult part is the splitting of the tasks according to the location of data sets. A trade-off has to be found between best use of available resources and minimal data movements. Ideally jobs should be executed where the data are stored. Since one cannot expect a uniform storage location distribution for every subset of data, the analysis framework has to negotiate with dedicated Grid services the balancing between local data access and data replication. Once the distribution is decided, the analysis framework spawns sub-jobs. These are submitted to the Workload Management with precise job descriptions. The user can control the results while and after data are processed. The framework collects and merges available results from all terminated sub-jobs on request. An analysis object associated with the analysis task remains persistent in the Grid environment so the user can go offline and reload an analysis task at a later date, check the status, merge current results or resubmit the same task with modified analysis code.

2.2 SYNCHRONOUS analysis MODEL

[The list is not exhaustive. It should not repeat the HEPCAL document but should help in checking the resulting architecture against these use cases]

3 Summary of Grid projects presented to this RTAG

[These are mostly the CHEP03 abstracts related to a given project, in the order in which they were presented to this RTAG. Other contributions and more detailed explanations are welcome.]

3.1 PROOF

The PROOF Distributed Parallel Analysis Framework based on ROOT

The development of the Parallel ROOT Facility, PROOF, enables a physicist to analyze and understand much larger data sets on a shorter time scale. It makes use of the inherent parallelism in event data and implements an architecture that optimizes I/O and CPU utilization in heterogeneous clusters with distributed storage. The system provides transparent and interactive access to gigabytes today. Being part of the ROOT framework PROOF inherits the benefits of a performant object storage system and a wealth of statistical and visualization tools. This paper describes the key principles of the PROOF architecture and the implementation of the system. We will illustrate its features using a simple example and present measurements of the scalability of the system. Finally we will discuss how PROOF can be interfaced and make use of the different Grid solutions.

[http://arXiv.org/abs/physics/0306110]

3.2 AliEn

The AliEn system, status and perspectives

AliEn is a production environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse HEP data in a distributed way. The system is built around Open Source components, uses the Web Services model and standard network protocols to mplement the computing platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. The aim o this paper is to present the current AliEn architecture and outline its future evelopments in the light of emerging standards. [http://arXiv.org/abs/cs/0306067]

AliEn Resource Brokers

AliEn (ALICE Environment) is a lightweight GRID framework developed by the Alice Collaboration. When the experiment starts running, it will collect data at a rate of approximately 2 PB per year, producing O(109) files per year. All these files, including all simulated events generated during the preparation phase of the experiment, must be accounted and reliably tracked in the GRID environment. The backbone of AliEn is a distributed file catalogue, which associates universal logical file name to physical file names for each dataset and provides transparent access to datasets independently of physical location. The file replication and transport is carried out under the control of the File Transport Broker. In addition, the file catalogue maintains information about every job running in the system. The jobs are distributed by the Job Resource Broker that is implemented using a simplified pull (as opposed to traditional push) architecture. This paper describes the Job and File Transport Resource Brokers and shows that a similar architecture can be applied to solve both problems. [http://arXiv.org/abs/cs.dc/0306068]
AliEnFS - a Linux File System for the AliEn Grid Services

Among the services offered by the AliEn (ALICE Environment this http URL) Grid framework there is a virtual file catalogue to allow transparent access to distributed data-sets using various file transfer protocols. alienfs (AliEn File System) integrates the AliEn file catalogue as a new file system type into the Linux kernel using LUFS, a hybrid user space file system framework. LUFS uses a special kernel interface level called VFS (Virtual File System Switch) to communicate via a generalised file system interface to the AliEn file system daemon. The AliEn framework is used for authentication, catalogue browsing, file registration and read/write transfer operations. A C++ API implements the generic file system operations. The goal of AliEnFS is to allow users easy interactive access to a worldwide distributed virtual file system using familiar shell commands (f.e. cp,ls,rm ...) The paper discusses general aspects of Grid File Systems, the AliEn implementation and present and future developments for the AliEn Grid File System. [http://arXiv.org/abs/cs.dc/0306071]

AliEn - EDG Interoperability in ALICE

AliEn (ALICE Environment) is a GRID-like system for large-scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and access to EDG produced data. A prototype interface has been successfully deployed using the ALICE AliEn Server and the EDG and DataTAG Testbeds. [http://arXiv.org/abs/physics/0306103]

3.3 CLARENS

The Clarens web services architecture

Clarens is a uniquely flexible web services infrastructure providing a unified access protocol to a diverse set of functions useful to the HEP community. It uses the standard HTTP protocol combined with application layer, certificate based authentication to provide single sign-on to individuals, organizations and hosts, with fine-grained access control to services, files and virtual organization (VO) management. This contribution describes the server functionality, while client applications are described in a subsequent talk. [http://arXiv.org/abs/cs.dc/0306002]

Clarens Client and Server Applications

Several applications have been implemented with access via the Clarens web service infrastructure, including virtual organization management, JetMET physics data analysis using relational databases, and Storage Resource Broker (SRB) access. This functionality is accessible transparently from Python scripts, the Root analysis framework and from Java applications and browser applets. [http://arXiv.org/abs/cs.dc/0306001]

3.4 DIAL

DIAL: Distributed Interactive Analysis of Large Datasets

DIAL will enable users to analyze very large, event-based datasets using an application that is natural to the data format. Both the dataset and the processing may be distributed over a farm, a site (collection of farms) or a grid (collection of sites). Here we describe the goals of the project, the current design and implementation, and plans for future development. DIAL is being developed within PPDG to understand the requirements that interactive analysis places on the grid and within ATLAS to enable distributed interactive analysis of event data. [http://arXiv.org/abs/hep-ph/0305093]

3.5 GANGA

GANGA: a user-Grid interface for Atlas and LHCb

The Gaudi/Athena and Grid Alliance (GANGA) is a front-end for the configuration, submission, monitoring, bookkeeping, output collection, and reporting of computing jobs run on a local batch system or on the grid. In particular, GANGA handles jobs that use applications written for the Gaudi software framework shared by the Atlas and LHCb experiments. GANGA exploits the commonality of Gaudi-based computing jobs, while insulating against grid-, batch- and framework-specific technicalities, to maximize end user productivity in defining, configuring, and executing jobs. Designed for a python-based component architecture, GANGA has a modular underpinning and is therefore well placed for contributing to, and benefiting from, work in related projects. Its functionality is accessible both from a scriptable command-line interface, for expert users and automated tasks, and through a graphical interface, which simplifies the interaction with GANGA for beginning and casual users. [http://arXiv.org/abs/cs.se/0306085]

3.6 DIRAC

DIRAC - Distributed Infrastructure with Remote Agent Control

DIRAC is the LHCb distributed MC Production system. It consists of a number of central services and clients running on each of the LHCb production sites. The central services include the following:

· Production service is managing the job queue. It accepts jobs prepared with a web based Production Editor. It gets requests for jobs from Agents, checks the capabilities of the requesting site and serves the jobs accordingly;

· Job monitoring service collects and visualizes the job status information;

· Bookkeeping service stores and serves metadata and replica information for the published datasets.

The clients at the production sites called Agents monitor the status of the local batch system. If there are slots available, Agent contacts the Production services for the workload; gets a job and installs the execution environment (software, databases) according to its requirements; submits the job to the local batch system. The job is executed with the help of the workflow executor scripts that steers the job and updates the central Job Monitoring service with the job progress status. After the job is executed, the Agent insures the dataset transfers, updating the Bookkeeping Services with the metadata and replica information for the newly produced datasets.

The DIRAC central services and Agents are implemented as XML-RPC servers and clients. [http://arXiv.org/abs/cs.dc/0306060]

4 AliEn Description

ALICE has developed the AliEn [
] (ALIce ENvironment) framework with aim to offer user community transparent access to computing resources distributed worldwide. The intention is to provide a functional computing environment that fulfils the needs of the experiment in the preparation phase and, at the same time, defines stable interface to the end users that will remain in place for long time, shielding the core software from inevitable changes in the technology. As new middleware becomes available, it will be interfaced with AliEn, allowing evaluation of its performance and functionality. The final objective is to reduce the size of the AliEn code, integrating more and more high-level components from the Grid middleware, while preserving its user environment and possibly enhancing its functionality. If this is found to be satisfactory, AliEn code can progressively removed in favour of standard middleware. In particular, the intention is to make AliEn services compatible with the Open Grid Services Architecture (OGSA) that has been proposed as a common foundation for future Grids.

4.1 Components and Services

The system is built around Open Source components, uses Web Services model and standard network protocols to implement the distributed computing platform that is currently being used to carry out the production of Monte Carlo data at over 30 sites on four continents. Only 1% (around 30k physical lines of code in perl) is native AliEn code while 99% of the code has been imported in form of Open Source packages and perl modules.

[image: image1.emf](…)

DBI

DBD

RDBMS

(MySQL)

LDAP

V.O.

Packages

&

Commands

Perl

Core

Perl

Modules

External

Libraries

File & Metadata

Catalogue

SOAP/XML

CE

SE

Logger

Database

Proxy

Authentication

RB

User Interface

ADBI

Config

Mgr

Package

Mgr

Web

Portal

User

Application

API (C/C++/

perl

)

CLI

GUI

AliEnCore Components & servicesInterfacesExternal software

Low level High level

FS

Figure 1: The building blocks of AliEn
AliEn Web Services play the central role in enabling AliEn as a distributed computing environment. The user interacts with them by exchanging SOAP messages and they constantly exchange messages between themselves behaving like a true Web of collaborating services.

[image: image2.wmf]API

DB Proxy

Auditing

DBD/RDBMS

Registry/Lookup/Config

V.O. directory

Authentication

Storage Element

Gatekeeper

Job Manager

Transfer Manager

File Transfer

Process Monitor

Transfer Broker

Job Broker

Job Optimizer

Transfer Optimizer

Catalogue Optimiser

Grid Monitoring

CE

1

1

1

1..n

1..n

1

1

1

1

1

1

1

1

1

0..n

0..n

0..n

0..n

0..n

Figure 2: AliEn Web Services and their interactions (current implementation)

[image: image3.wmf]API

User Interface Factory

Auditing

DBD/RDBMS

Registry/Lookup/Config

V.O. directory

Authentication

Storage Element

Gatekeeper

Job Manager

Transfer Manager

File Transfer

Process Monitor

Transfer Broker

Job Broker

Job Optimizer

Transfer Optimizer

Catalogue Optimiser

User Interface

Grid Monitoring

CE

1

1..n

1

1

0..n

1..n

1

1

1

1

1

1

1

1

1

0..n

0..n

0..n

0..n

0..n

1. lookup

2. authenticate

3. register

4. bind

Authorisation

1

File Catalogue

Metadata Catalogue

Task Queue

DB PRoxy

1

1

1

1

Package Manager

Job Provenance

1

Figure 3: AliEn Services and their interactions (additional components exposed as Web Services)

In attempt to abstract the implementation details and retain manageable granularity of components, the services are grouped together into the logical groups, which more or less correspond to usual components found in alternative Grid implementations (Figure 4).

[image: image4.wmf]API

User Interface Factory

Auditing

DBD/RDBMS

Registry/Lookup/Config

V.O. directory

Authentication

Storage Element

Gatekeeper

Job Manager

Transfer Manager

File Transfer

Process Monitor

Transfer Broker

Job Broker

Job Optimizer

Transfer Optimizer

Catalogue Optimiser

User Interface

Grid Monitoring

CE

1

1..n

1

1

0..n

1..n

1

1

1

1

1

1

1

1

1

0..n

0..n

0..n

0..n

0..n

1. lookup

2. authenticate

3. register

4. bind

Authorisation

1

File Catalogue

Metadata Catalogue

Task Queue

DB PRoxy

1

1

1

1

Package Manager

Job Provenance

1

Information

Service

Authentication

Authorisation

User Interface

Grid Monitoring

Workload Management

Data Management

Storage

Element

Job Monitor

Computing

Element

Job Provenance

Auditing

Metadata

Catalogue

File

Catalogue

Package

Manager

Figure 4: AliEn logical groups of services

The backend of AliEn is a relational database or, in a more general case, a federation of relational databases. While this, in principle, can also be a federation of heterogeneous databases in practice we use the MySQL databases. To avoid linking with any specific database driver on the client side, all connections to the databases are channelled via a Proxy Service. The application connects to the Proxy Service by means of a special AliEnProxy driver so that the real database driver and libraries need to be installed only in the place where an instance of the database Proxy Service is running.

5 General decomposition

[image: image5.wmf]Information

Service

Authentication

Authorisation

Auditing

Grid

Monitoring

 Workload

Management

Metadata

Catalogue

File

Catalogue

Data

Management

Computing

Element

Storage

Element

Job

Monitor

Job

Provenance

Package

Manager

DB Proxy

User

Interface

API

7:

12:

5:

13:

8:

15:

11:

9:

10:

1:

4:

2:

3:

6:

14:

Figure 5: The interaction diagram of key Grid components for typical analysis use case

From the analysis of the AliEn architecture presented in the previous section we derive the decomposition in the following key services:

· API and User Interface

· Authentication, Authorisation and Auditing services

· Workload and Data Management Systems

· File and Metadata Catalogues

· Information service

· Grid and Job Monitoring services

· Storage and Computing elements

· Package Manager and Job provenance service.

In the following we give descriptions of the identified services. The emphasis is made on the services functionality that can be exposed via its public interface. The interface descriptions are given to better explain the functionality rather than to be a precise specification. In the current version of the document detailed material on the AliEn implementations is given where possible in order to keep the discussion practical. The further work should allow presenting the results of this analysis in more formal way.

5.1 API and User Interface

5.1.1 API

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.1.1.1.1 Existing Implementations

5.1.1.1.1.1 AliEn

The File Catalogue API provides a command line interface similar to a UNIX file system with the most common commands implemented. Similar functionality is provided by the graphical user interface. Using these interfaces, it is possible to access the catalogue, submit jobs and retrieve the output. AliEn provides a web portal as an alternative user interface where one can check the status of the current and past jobs, submit new jobs and interact with them. The web portal offers additional functionality to ‘power’ users – Grid administrators can check the status of all services, monitor, start and stop them while VO administrators (production user) can submit and manipulate bulk jobs.

To maintain compatibility with EDG/LCG Grid projects, AliEn user interface uses the Condor ClassAds [
] as a Job Description Language (JDL). The JDL defines the executable, its arguments and the software packages or data that are required by the job. The Workload Management service can modify the job’s JDL entry by adding or elaborating requirements based on the detailed information it can get from the system like the exact location of the dataset and replicas, client and service capabilities.
In order to gain access to Grid at the application level, users need an API. Besides the native perl module that allows user to use, modify or extend the interface, AliEn provides C and C++ API. In particular, the C++ API is thread safe and we used it to implement a fully featured file system on top of AliEn File Catalogue (alienfs).

5.1.1.1.2 Public Interface

class TAliEnAPI {

 /*

 * General information:

 * All functions returning int will return 0 on success, a negative value

 * on failure:

 * -1 : Error in the argument list

 * -2 : The SoapCall failed

 * -3 : The called function returned an error

 */

public:

 typedef unsigned long RESULTHANDLE;

 typedef struct Result_T {

 string name;

 string name2;

 struct stat info;

 };

 TAliEnAPI(){

 fNextHandle = 1;

 }

 virtual ~TAliEnAPI() {

 }

 /*

 * Opens directory cname and returns HANDLE for browsing through the directory

 * Use ReadResult, ResetResult and CloseResult for browsing

 * Returns 0 if there is an error

 */

 RESULTHANDLE OpenDir(const char *cname);

 /*

 * Closes the directory hResult and frees the assoziated information.

 * Do not use Result_T structs after freeing a handle.

 */

 void CloseResult(const RESULTHANDLE hResult);

 /*

 * Resets the directory information hResult, so browsing with ReadResult

 * starts with the first entry.

 */

 void ResetResult(const RESULTHANDLE hResult);

 /*

 * Returns the next result of the directory hResult.

 * A pointer to a Result_T struct is returned, the values which are filled depend

 * on the type of result. The struct can be uses until the result is freed with CloseResult.

 * Returns NULL when reaching the end of list

 */

 const struct Result_T* ReadResult(const RESULTHANDLE hResult);

 /*

 * Creates a directory in AliEn.

 * If makeall = true is passed, all directories in the path, which do not exist

 * are created.

 * Returns negative value on error, zero on success.

 */

 int MkDir(const char *dir, const bool makeall = false);

 /*

 * Removes a directory from AliEn.

 * If deleteall = true is passed all containing subdirectories and files are deleted.

 * Otherwise deleting of a not empty directory is not permitted.

 * Returns negative value on error, zero on success.

 */

 int RmDir(const char *dir, const bool deleteall = false);

 /*

 * Removes a file from AliEn.

 * Returns negative value on error, zero on success.

 */

 int Rm(const char *lfn, const bool deleteall = false);

 /*

 * Copies a file from source to target.

 * Returns negative value on error, zero on success.

 */

 int Cp(const char *source, const char *target);

 /*

 * Moves a file from source to target.

 * Returns negative value on error, zero on success.

 */

 int Mv(const char *source, const char *target);

 /*

 * Add physical file to catalog and associate logical file name.

 * Returns -1 on error, like lfn, pfn already exists, etc.

 * Example:

 * lfn="lfn://[alien.cern.ch]/alice/cern.ch/user/p/psaiz/http.file"

 * pfn="castor://host/path"

 * size=12001

 * size of the file in bytes. It's optional. If -1, AliEn will try

 * to guess the size from the pfn.

 */

 int AddFile(const char *lfn, const char *pfn, int size = -1);

 /*

 * Add physical file mirror to logical file name.

 * Example:

 * lfn="lfn://[alien.cern.ch]/alice/cern.ch/user/p/psaiz/http.file"

 * pfn="castor://host/path"

 * se="Alice::CERN::scratch" (NULL = no SE)

 */

 int AddFileMirror(const char *lfn, const char *pfn, const char *se);

 /*

 * Register physical file to catalog and associate logical file name.

 * Example:

 * lfn="lfn://[alien.cern.ch]/alice/cern.ch/user/p/psaiz/http.file"

 * pfn="castor://host/path"

 * Storage elements can be given as a second arguement like:

 * pfn="myfile.root Alice::CERN::scratch"

 */

 int RegisterFile(const char *lfn, const char *pfn);

 /*

 * Get physical file name associated to logical file name.

 * Returns 0 in case of error.

 * Surf through the handles by ReadResult, ResetResult and CloseResult

 */

 RESULTHANDLE GetPhysicalFileNames(const char *lfn);

 /*

 * Add a tag to a directory.

 * Example:

 * tagName="standard"

 */

 int AddTag(const char *lfn, const char *tagName);

 /*

 * Get tags for specified logical file name.

 * Returns empty list in case no tags

 * were found. Returned string must be freed by user.

 */

 RESULTHANDLE GetTags(const char *lfn);

 /*

 * Add attribute to lfn, like "run" "1001".

 * Example:

 * tagName="standard"

 * attrname="tagIndex" //or "value"

 * attrval=<int> //or <char(20)>

 */

 int AddAttribute(const char *lfn, const char *tagName,

 const char *attrname, const char *attrval);

 /*

 * Delete attribute associated to lfn.

 * If attrname is empty, deletes all the attributes of this tag

 * Otherwise, it deletes only the value of that attribute

 * Arguments:

 * lfn="lfn://[alien.cern.ch]/alice/cern.ch/user/p/psaiz/file"

 * tagName="MonteCarloRuns"

 * attrname="";

 */

 int DeleteAttribute(const char *lfn, const char *tagName,

 const char *attrname);

 /*

 * Get list of attributes defined for lfn. Returns 0 in case of error.

 * Surf through the handles by ReadResult, ResetResult and CloseResult

 */

 RESULTHANDLE GetAttributes(const char *lfn, const char *tagName);

 /*

 * Change access mode of lfn. <mode> is the usual st_mode.

 * Returns -1 in case of error.

 */

 int Chmod(char* lfn, int mode);

 /*

 * Change Owner (if [<group>!=NULL]+Group) of lfn.

 */

 int Chown(char* lfn, char* owner, char* group);

 /*

 * Query for lfn.

 * It returns a list of files that match a given pattern. The pattern

 * can contain conditions on metadata (tags).

 * Format:

 * wildcard="lfn://<host>/<path>?<tagname>:<tagcondition>

 * Examples:

 * wildcard="lfn://alien.cern.ch/alice/bin/date"

 * wildcard="lfn:///alice/simulation/2001-04/V0.6*.root"

 * wildcard="lfn:///alice/simulation/2001-04*?MonteCarloRuns:HolesPHOSRICH=1"

 */

 //? AlienResult_t *AlienGetFile(const char *wildcard);

 /*

 * Download a file.

 */

 //? AlienResult_t *AlienRetrieveFile(const char *lfn);

 /*

 * Download a filechunk.

 * offset : where to start to read file

 * size : bytes to read

 * destinationfilename : NULL - let AliEn decide the temp-name or

 * give <locafilename>

 * returns the destinationfilename or 0 in result count!

 */

 //? AlienResult_t *AlienRetrieveFileChunk(const char *lfn, long offset, unsigned long size, const char* destinationfilename);

 /* Submit a Job to AliEn, give the Job Description File as an argument.

 <JDL-File> can be a local or file (file://<machine>/<path>) or on

 alien </alice/cern.ch/>

 */

 int SubmitJob(const char *jdlfile);

 RESULTHANDLE QueryJob(int JobId);

 //Kill

 //Resubmit

};
5.1.1.1.2.1 DIRAC

5.1.1.1.2.2 EDG 1.4

5.1.1.1.2.3 EDG 2.0

5.1.2 User Interface

5.1.2.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.1.2.1.2 Existing Implementations

5.1.2.1.2.1 AliEn

The User Interface Service represents the SOAP server counterpart to C++ API described above.

5.1.2.1.2.2 DIRAC

A user client application communicates directly to the Bookkeeping (metadata), Production (job submission) and Monitoring services via XML-RPC protocol.

5.1.2.1.2.3 EDG 1.4

5.1.2.1.2.4 EDG 2.0

5.2 Authentication

5.2.1 Authentication Service

5.2.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.2.1.1.2 Existing Implementations

5.2.1.1.2.1 AliEn

The Authentication Service is responsible for checking user’s credentials. AliEn uses the SASL [
] protocol for authentication and implements several SASL mechanisms (GSSAPI using Globus/GSI, AFS password, SSH key, X509 certificates and AliEn tokens)

[image: image6.wmf]SASL.lib.Authen::AliEnSASL

new()

callback()

client_new()

server_new()

(from SASL.lib.Authen)

SASL.lib.Authen.AliEnSASL::Perl

client_new()

(from SASL.lib.Authen.AliEnSASL)

SASL.lib.Authen.AliEnSASL.Perl.Server::GSSAPI

new()

_secflags()

_seclevel()

start()

step()

mechanism()

encode()

decode()

logmsg()

(from SASL.lib.Authen.AliEnSASL.Perl.Server)

SASL.lib.Authen.AliEnSASL.Perl.Server::PLAIN

new()

_seclevel()

_secflags()

start()

step()

mechanism()

(from SASL.lib.Authen.AliEnSASL.Perl.Server)

SASL.lib.Authen.AliEnSASL.Perl.Server::SSH

new()

_seclevel()

_secflags()

start()

step()

mechanism()

(from SASL.lib.Authen.AliEnSASL.Perl.Server)

SASL.lib.Authen.AliEnSASL.Perl::Server

new()

order()

start()

listmech()

mechanism()

step()

getUsername()

getRole()

getSecret()

encode()

decode()

blocksize()

(from SASL.lib.Authen.AliEnSASL.Perl)

SASL.lib.Authen.AliEnSASL.Perl.Server::TOKEN

new()

_seclevel()

_secflags()

start()

step()

mechanism()

(from SASL.lib.Authen.AliEnSASL.Perl.Server)

Upon successful authentication a Proxy Service acquires and holds the real database handle on behalf of a user and returns a temporary access token which the user has to present in order to re-connect to the database. The token remains in user possession and is valid for a limited period of time.

[image: image7.wmf]AliEn.Service::Authen

initialize()

verifyToken()

verify()

checkUserLDAP()

getTokenFromSubject()

createTable()

reconnect()

changePrivileges()

insertJob()

getJobToken()

checkJobToken()

removeToken()

insertKey()

CheckLocalPassword()

CheckProductionUser()

insertCert()

addUser()

requestCert()

5.2.1.1.2.2 DIRAC

Plain password authentication when accessing services via Web portal interface

5.2.1.1.2.3 EDG 1.4

5.2.1.1.2.4 EDG 2.0

5.2.2 VO Administration Service

5.2.2.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	AddUser
	Yes
	Adds new user to the VO database

	AddRole
	Yes
	Adds new role to the VO database

5.2.2.1.2 Existing Implementations

5.2.2.1.2.1 AliEn

This service provides means for update and administration of the users/roles/groups information for a given VO. This information is used for user authentication and authorization of various user operations. AliEn uses a hierarchical database (LDAP – Lightweight Directory Access Protocol) to describe the static configuration for each Virtual Organization (VO). This includes People, Roles, Packages, Sites and Grid Partitions as well as the description and configuration of all services on remote sites. The code that is deployed on remote sites or user workstations does not require any specific VO configuration files, everything is retrieved from the LDAP configuration server at run time thus allowing user to select VO dynamically.

5.2.2.1.2.2 DIRAC

None

5.2.2.1.2.3 EDG 1.4

LDAP directory service

5.2.2.1.2.4 EDG 2.0

VOMS

5.3 Authorisation Service

5.3.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.3.1.1.2 Existing Implementations

5.3.1.1.2.1 AliEn

5.3.1.1.2.2 DIRAC

5.3.1.1.2.3 EDG 1.4

5.3.1.1.2.4 EDG 2.0

5.4 Auditing Service

5.4.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.4.1.1.2 Existing Implementations

5.4.1.1.2.1 AliEn

An Auditing Service (Logger) provides the mechanism for all services to report their status and error conditions. This allows Grid manager to monitor all exceptions in the system and to take corrective action.

5.4.1.1.2.2 DIRAC

All the services are writing separate log files

5.4.1.1.2.3 EDG 1.4

5.4.1.1.2.4 EDG 2.0

5.5 Information System

5.5.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.5.1.1.2 Existing Implementations

5.5.1.1.2.1 AliEn

The Configuration Manager is responsible for discovery and read-only interactions with the LDAP server. It extracts all relevant configuration parameters that apply to a particular VO in the context of a site and a specific host. The information is kept in a cache to avoid frequent LDAP lookups.
[image: image8.wmf]AliEn::Config

new()

DESTROY()

Reload()

Initialize()

GetLDAPDN()

GetGridPartition()

GetPackages()

GetPackageVersion()

GetSite()

ChangeCacheDir()

GetServices()

GetOrganisation()

GetHostConfig()

setService()

getValue()

addPackage()

GetConfigFromCM()

CheckService()

checkSOAPreturn()

(from AliEn)

5.5.1.1.2.2 DIRAC

5.5.1.1.2.3 EDG 1.4

MDS

5.5.1.1.2.4 EDG 2.0

R-GMA

5.6 Computing Elements

5.6.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.6.1.1.2 Existing Implementations

5.6.1.1.2.1 AliEn

The Computing Element (CE) is an interface to the local batch system. At present, AliEn provides interfaces to LSF, PBS, BQS, DQS, Globus and Condor. The task of a CE is to get hold of jobs JDLs from the CPU Server, translate them to the syntax appropriate for the local batch system syntax and execute them. Each job is wrapped up in another Web Service (Process Monitor) allowing users to interact with the running job (send a signal or inspect the output). Prior to job execution, the CE can automatically install the software packages required by the job using the Package Manager functionality.

[image: image9.wmf]AliEn.LQ::CONDOR

submit()

getQueueStatus()

getStatus()

initialize()()

kill()

AliEn.LQ::DQS

submit()

getQueueStatus()

getStatus()

kill()

initialize()()

AliEn.LQ::EDG

initialize()

submit()

GetJobRequirements()

getQueueStatus()

getStatus()

kill()

AliEn.LQ::LSF

Untitled()

submit()

kill()

getQueueStatus()

getStatus()

getExpired()

excludeHosts()

initialize()()

AliEn.LQ::PBS

submit()

getQueueStatus()

getStatus()

kill()

initialize()()

AliEn.LQ::SGE

submit()

getQueueStatus()

getStatus()

kill()

initialize()()

AliEn::LQ

new()

kill()

submit()

initialize()

getQueueStatus()

getStatus()

getExpired()

excludeHosts()

(from AliEn::MSS)

AliEn.LQ::FORK

initialize()()

AliEn.LQ::Globus

submit()

getStatus()

initialize()()

5.6.1.1.2.2 DIRAC

Agents are processes running on each production site (Computing Element). They are implemented in Python and have classes representing different batch systems. At present there exist LSF, PBS, BQS and EDG interfaces. Each Agent is an XML-RPC client of the central Production service. It gets job in a form of xml description files, optionally installs the necessary software, submits jobs to the local batch system, performs data transfers in the end of the job execution and updates the Bookkeeping database.

5.6.1.1.2.3 EDG 1.4

5.6.1.1.2.4 EDG 2.0

5.7 Storage Elements

5.7.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.7.1.1.2 Existing Implementations

5.7.1.1.2.1 AliEn

The Storage Element (SE) is responsible for saving and retrieving the files to and from the local storage. It manages disk space for files and maintains the cache for temporary files.

[image: image10.wmf]AliEn.MSS::adsm

new()

mkdir()

get()

put()

mv()

rm()

getSize()

sizeof()

url()

AliEn.MSS::Castor

mkdir()

cp()

mv()

rm()

sizeof()

url()

AliEn.MSS::DB

new()

get()

Connect()

sizeof()

url()

AliEn.MSS::DMF

mkdir()

cp()

mv()

rm()

url()

sizeof()

AliEn.MSS::EDG

new()

GetEDGSE()

mkdir()

put()

GetPhysicalFileName()

get()

cp()

mv()

rm()

sizeof()

url()

AliEn.MSS::File

mkdir()

link()

cp()

mv()

rm()

sizeof()

url()

AliEn.MSS::HPSS

_System()

mkdir()

cp()

mv()

rm()

sizeof()

url()

AliEn.MSS::HSI

mkdir()

get()

put()

mv()

rm()

sizeof()

url()

getFTPCopy()

AliEn.MSS::HTTP

get()

getWithWGET()

sizeof()

url()

AliEn.MSS::SOAP

new()

get()

sizeof()

url()

AliEn::MSS

new()

configure()

newFileName()

save()

parse()

createdir()

getURL()

get()

put()

link()

getFTPCopy()

(from AliEn)

[image: image11.wmf]AliEn.Service::SE

initialize()

quit()

copyFile()

alive()

checkTransfer()

getFileSOAP()

getURL()

getFile()

getFileChunkSOAP()

getFileName()

5.7.1.1.2.2 DIRAC

Python API to remotely access bbftp and ftp servers and to use the EDG Replica Manager functions.

5.7.1.1.2.3 EDG 1.4

5.7.1.1.2.4 EDG 2.0

5.8 Workload Management

5.8.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.8.1.1.2 Existing Implementations

5.8.1.1.2.1 AliEn

As opposed to the traditional push architecture, AliEn workload management system is distributed (involves services deployed on remote sites) and it is based on a ``pull'' approach. A central service component manages all the tasks while computing elements are defined as ``remote queues'' and can, in principle, provide outlet to a single machine dedicated to run a specific task, a cluster of computers, or even an entire foreign Grid. When jobs are submitted, they are sent to the central task queue.

The workload manager optimizes the queue taking into account job requirements based on input files, CPU time, architecture, disk space etc.. It then makes jobs eligible to run on one or more computing element. The active nodes then get jobs from the queue and start their execution. The queue system monitors the job progression and has access to the standard output and standard error.

While the jobs or file transfer requests are waiting in the task queue, the Job and Transfer Optimizers will inspect JDLs and try to fulfil requests and resolve conflicts. This can result in the system triggering file replication in order to make job eligible to run on some sites to balance the overall load on the system. Along the same lines, one can also implement policy monitors to enforce VO policies by altering job priorities.

[image: image12.emf]Tier0

TASK QUEUE

CPUServer

ACCT

REMOTE

SITE

RemoteQueue

ClusterMonitor

Job

1

Process

Monitor

Job

1

Process

Monitor

Job

2

Process

Monitor

Job

n

Process

Monitor

ACCT

REMOTE SITE

or

ANOTHER

GRID

RemoteQueue

ClusterMonitor

AliEnServer

EDG/Globus

Broker

Authen

Logger

TransferBroker

IS

TransferOptimiser

Figure 6: AliEn Workload Management

Due to weak coupling between the resources and the Resource Brokers in the AliEn Grid model it is possible to imagine a hierarchical Grid structure that spans multiple AliEn and “foreign” Grids but also includes all resources under the direct control of top level Virtual Organization.

The connectivity lines in Figure 7 represent the collaboration and trust relationships. In this picture the entire foreign Grid can be represented as a single Computing and Storage Element (albeit a potentially powerful one). In this sense, we have constructed the AliEn-EDG interface and tested the interoperability.. Along the same lines, AliEn-AliEn interface allows creation of federation of collaborating Grids. The resources in this picture can be still shared between various top level Virtual Organizations according to the local site policy so that the Grid federations can overlap at resource level.

[image: image13.wmf]GRID

GRID

ALICE

Virtual Org.

AliEn

Grid

ALICE

Virtual Org.

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Another

Virtual Org.

AliEn

Grid

Another

Virtual Org.

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Another

AliEn

Grid

Figure 7: The federation of collaborating Grids

[image: image14.wmf]AliEn::Service::Broker::Job

AliEn.Service::Broker

initialize()

extractCommand()

match()

findjob()

requestCommand()

AliEn.Service::Manager

initialize()

AliEn.Service::Optimizer

initialize()

AliEn::Service::Optimizer::Job

AliEn::Service::Optimizer::Catalogue

AliEn.Service::ClusterMonitor

initialize()

checkConnection()

checkService()

getExcludedHosts()

addExcludedHost()

alive()

requestCommand()

getJobJDL()

changeStatusCommand()

resubmitCommand()

getQueueStatus()

enterCommand()

getTop()

getOutput()

getStdout()

getStderr()

killProcess()

validateProcess()

KillProcessBatch()

getFileSOAP()

checkFileSize()

putFILE()

getMessages()()

StartRemoteQueue()

StopRemoteQueue()

RestartClient()

ClearError()

UpdateDistribution()

checkWakesUp()

cleanMessages()()

checkExpired()()

catch_zap()

ReloadConfiguration()

GetConfiguration()

DESTROY()

CheckRunningJobs()

StartSE()

StartFTD()

StartService()

checkSOAPreturn()

AliEn.Service::Manager::Job

initialize()

alive()

GetNumberJobs()

InsertHost()

extractCommand()

match()

findjob()

requestCommand()

enterCommand()

changeStatusCommand()

getExecHost()

getTop()

killProcess()

validateProcess()

resubmitCommand()

GetInputBoxFromJDL()

UpdateNumberDone()

AliEn::CE

new()

CreateClassAd()

checkRequirements()

checkType()

requirementsFromInput()

checkInputFiles()

modifyJobCA()

getJdl()

submitCommand()

requestCommand()

executeCommand()

SetEnvironmentForExecution()

f_top()

f_kill()

f_validate()

f_quit()

checkConnection()

submitCommands()

resubmitCommand()

checkSOAPreturn()

DESTROY()

catch_zap()

(from AliEn)

5.8.1.1.2.2 DIRAC

Collaboration of the Central Production services which manages the VO wise job queue and Agents running on each production site. Agents are “pulling” the jobs from the Production service whenever there is a free slot in the local batch system and steer the job execution.

In case of the DIRAC work with the EDG execution back-end, a job submitted to the Resource Broker after arriving to a worker node starts with the installation of a standard DIRAC agent. This turns the worker node to be a small DIRAC “production site”. The rest is done in exactly the same way as with the usual production site.

5.8.1.1.2.3 EDG 1.4

5.8.1.1.2.4 EDG 2.0

5.9 Data Management

5.9.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.9.1.1.2 Existing Implementations

5.9.1.1.2.1 AliEn

This service typically runs on the same host as the Storage Element and provides the scheduled file transfer functionality. The File Transfer Daemons (FTD) are mutually authenticated using certificates and will perform file transfer on user’s behalf using the bbftp [
] protocol. File transfers are requested and scheduled in exactly the same way as jobs, this time under the control of the File Transfer Broker.

[image: image15.wmf]AliEn.Service.Optimizer::Transfer

initialize()

checkWakesUp()

createTransferJDL()

checkNewTransfers()

(from AliEn.Service.Optimizer)

AliEn.Service::Manager

initialize()

AliEn.Service::Broker

initialize()

extractCommand()

match()

findjob()

requestCommand()

AliEn.Service.Broker::Transfer

initialize()

match()

findTransfer()

requestTransfer()

getTransferArguments()

(from AliEn.Service.Broker)

AliEn.Service::FTD

initialize()

createJDL()

chekCertificate()

startListening()

alloc()

startTransfer()

verifyTransfer()

checkWakesUp()

makeLocalCopy()

cleanLocalCopy()

UpdateDiskSpace()

dirandfile()

doTransfer()

CURRENT_TRANSFERS()

CURRENT_TRANSFERS_INCREMENT()

CURRENT_TRANSFERS_DECREMENT()

checkIngoingTraffic()

chekcOutgoingTraffic()

transferDone()

failTransfer()

verifyCompleteTransfer()

askToGet()

askToPut()

CreateLocalUniquePFN()

requestTransfer()

inquireTransferByID()

checkTransfer()

getInfo()

senfFile()

startBBFTPD()

1

1

AliEn.Service.Manager::Transfer

initialize()

enterTransfer()

changeStatusTransfer()

updateCatalogue()

getNewRequirements()

checkTransfer()

(from AliEn.Service.Manager)

5.9.1.1.2.2 DIRAC

5.9.1.1.2.3 EDG 1.4

5.9.1.1.2.4 EDG 2.0

5.10 File Catalogue

5.10.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.10.1.1.2 Existing Implementations

5.10.1.1.2.1 AliEn

Input and output associated with any job can be registered in the File Catalogue, a virtual file system in which a logical name is assigned to a file. Unlike real file systems, the File Catalogue does not own the files; it only keeps an association between the Logical File Name (LFN) and (possibly more than one) Physical File Names (PFN) on a real file or mass storage system. PFNs describe the physical location of the files and include the name of the Storage Element and the path to the local file.
The system supports the file replication and caching and will use file location information when it comes to scheduling jobs for execution. The directories and files in the File Catalogue have privileges for owner, group and the world. This means that every user can have exclusive read and write privileges for his portion of the logical file namespace (home directory). In order to address the problem of scalability, the AliEn File Catalogue is designed to allow each directory node in the hierarchy to be supported by different database engines, possibly running on different host and, in future version, even having different internal table structures, optimized for a particular branch (Figure 8).

[image: image16.emf]ALICE

USERS

ALICE

SIM

Tier1

ALICE

LOCAL

|--./

| |--cern.ch/

| | |--user/

| | | |--a/

| | | | |--admin/

| | | | |

| | | | |--aliprod/

| | | |

| | | |--f/

| | | | |--fca/

| | | |

| | | |--p/

| | | | |--psaiz/

| | | | | |--as/

| | | | | |

| | | | | |--dos/

| | | | | |

| | | | | |--local/

|--simulation/

| |--2001-01/

| | |--V3.05/

| | | |--Config.C

| | | |--grun.C

| |--36/

| | |--stderr

| | |--stdin

| | |--stdout

| |

| |--37/

| | |--stderr

| | |--stdin

| | |--stdout

| |

| |--38/

| | |--stderr

| | |--stdin

| | |--stdout

| | | |

| | | |--b/

| | | | |--barbera/

/PROC

Figure 8: AliEn File Catalogue

[image: image17.wmf]AliEn::Catalogue

getDispPath()

new()

validateDatabase()

f_pwd()

f_ls()

f_cd()

f_mkdir()

f_rmdir()

f_quit()

f_disconnect()

f_mkremdir()

f_rmlink()

f_complete_path()

f_basename()

f_parent_dir()

f_dirname()

f_dir()

f_print()

f_whoami()

f_user()

f_passwd()

selectDatabase()

checkGroup()

checkOwner()

checkPermissions()

checkOnePerm()

f_find()

f_revalidateToken()

createRemoteTable()

printTreeLevel()

f_tree()

f_zoom()

filterFiles()

f_echo()

DESTROY()

(from AliEn)

1

AliEn.UI::Catalogue

AddCommands()

AddHelp()

help()

new()

startPrompt()

catch_zap()

initialize()

setSilent()

setDebug()

execute()

close()

AliEn.Catalogue::Group

f_umask()

f_groups()

f_chmod()

f_chown()

changePriv()

(from AliEn.Catalogue)

AliEn.Catalogue::Tag

f_addTag()

f_removeTag()

f_showTags()

tagExists()

f_addTagValue()

f_showTagValue()

f_getTagValues()

f_removeTagValue()

(from AliEn.Catalogue)

AliEn.UI.Catalogue::LCM

initialize()

setDebug()

get()

selectClosestPFN()

cat()

Getopts()

register()

mirror()

addTag()

(from AliEn.UI.Catalogue)

AliEn.Catalogue::Admin

f_addHost()

f_addUser()

getUserGroup()

f_host()

f_chgroup()

(from AliEn.Catalogue)

5.10.1.1.2.2 DIRAC

ORACLE database with an XML-RPC server as a front-end.

5.10.1.1.2.3 EDG 1.4

5.10.1.1.2.4 EDG 2.0

5.11 Metadata Catalogue

5.11.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.11.1.1.2 Existing Implementations

5.11.1.1.2.1 AliEn

The hierarchy of files and directories in the AliEn File Catalogue reflects the structure of the underlying database tables. In the simplest and default case, a new table is associated with each directory. In analogy to a file system, the directory table can contain entries that represent the files or again subdirectories. Due to this internal structure, it is possible to attach to a given directory table an arbitrary number of additional tables, each one having a different structure and possibly different access rights while containing metadata information that further describes the content of files in a given directory. This scheme is highly granular and allows fine access control. Moreover, if similar files are always catalogued together in the same directory this can substantially reduce the amount of metadata that needs to be stored in the database. While having to search over a potentially large number of tables may seem ineffective, the overall search scope has been greatly reduced using the file system hierarchy paradigm and, if data are sensibly clustered and directories are spread over multiple database servers, we could even execute searches in parallel and effectively gain performance while assuring scalability.

5.11.1.1.2.2 DIRAC

ORACLE database with an XML-RPC server as a front-end. Web based user interface.

5.11.1.1.2.3 EDG 1.4

5.11.1.1.2.4 EDG 2.0

5.12 Job Monitoring

[image: image18.wmf]AliEn.Service::ProcessMonitor

new()

GetJDL()

CreateDirs()

getStatus()

getOutput()

getFile()

zgetStdout()

zgetStderr()

startMonitor()

finishMonitor()

executeCommand()

getFiles()

putFiles()

submitLocalFile()

catch_zap()

sendEmail()

alive()

(from AliEn.Service)

5.12.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.12.1.1.2 Existing Implementations

5.12.1.1.2.1 AliEn

5.12.1.1.2.2 DIRAC

ORACLE database with an XML-RPC server as a front-end. Web based user interface displaying jobs status.

5.12.1.1.2.3 EDG 1.4

5.12.1.1.2.4 EDG 2.0

5.13 Job Provenance

5.13.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.13.1.1.2 Existing Implementations

5.13.1.1.2.1 AliEn

The File Catalogue is not meant to support only regular files – we have extended the file system paradigm and included information about running processes in the system (in analogy with the /proc directory on Linux systems). Each job sent to AliEn for execution gets an unique id and a corresponding /proc/id directory where it can register temporary files, standard input and output as well as all job products. In a typical production scenario, only after a separate process has verified the output, the job products will be renamed and registered in their final destination in the File Catalogue. The entries (LFNs) in the AliEn File Catalogue have an immutable unique file id attribute that is required to support long references (for instance in ROOT) and symbolic links.

5.13.1.1.2.2 DIRAC

Part of the ORACLE based Bookkeeping database.

5.13.1.1.2.3 EDG 1.4

5.13.1.1.2.4 EDG 2.0

5.14 Package Manager

5.14.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.14.1.1.2 Existing Implementations

5.14.1.1.2.1 AliEn

Each VO can provide the Packages and Commands that can be subsequently executed on AliEn Grid. Once the corresponding tar files with bundled executables and libraries are published in the File Catalogue and registered in a LDAP directory, the AliEn Package Manager will install them automatically as soon as a job becomes eligible to run on a site whose policy accepts these jobs. While installing the package in a shared package repository, the Package Manager will resolve the dependencies on other packages and, taking into account package versions, install them as well. This means that old versions of packages can be safely removed from the shared repository and, if these are needed again at some point later, they will be re-installed automatically by the system. This provides a convenient and automated way to distribute the experiment specific software across the Grid and assures accountability in the long term.

[image: image19.wmf]AliEn::PackMan

new()

DESTROY()

Configure()

List()

Add()

RemoveAll()

GetLatestVersion()

(from AliEn)

5.14.1.1.2.2 DIRAC

Once the software package is properly bundled by the LHCb Software manager and is available in the Software repository (via http protocol), Agents running on each production site can install the packages required by jobs. The check is done for each job, so old packages can be safely removed.

Application Python classes which are responsible for the interpretation of the job descriptions and steering the job executions.

5.14.1.1.2.3 EDG 1.4

5.14.1.1.2.4 EDG 2.0

5.15 Grid Monitoring

5.15.1.1.1 Public Interface

	Public Method
	Needs authorization
	Comments

	
	
	

	
	
	

5.15.1.1.2 Existing Implementations

5.15.1.1.2.1 AliEn

The Resource Brokers do not require overall monitoring information to carry out job or file transfer scheduling. However, if available, this information would be useful to various Optimizer services. We are currently planning to deploy the MonaLisa [
] monitoring framework as a part of the AliEn Monitor Module. It will collect the monitoring information and publish it via Web Service for use by AliEn Optimizers or for visualization purposes. On the longer term, the intention is to re-use the network simulation code originally developed for MONARC [
] and now part of MonaLisa and extend it to cover the behaviour of the distributed Web of services that constitute the AliEn Grid. With this, we should be able to optimize and understand the performance of the system and verify its scalability.

5.15.1.1.2.2 DIRAC

5.15.1.1.2.3 EDG 1.4

5.15.1.1.2.4 EDG 2.

[�] 	P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. -E. Revsbech and V. Sego, AliEn – ALICE environment on the GRID,

	Nucl. Instr. and Meth. A 502 (2003) 437-440, http://alien.cern.ch

[�]	Condor Classified Advertisements, http://www.cs.wisc.edu/condor/classad

[�]	http://asg.web.cmu.edu/sasl/

[�]	http://doc.in2p3.fr/bbftp/

[�] 	H. B. Newman, I.C. Legrand, MonaLisa: A Distributed Monitoring Service Architecture, these proceedings, MOET001

[�] 	http://asg.web.cmu.edu/sasl/

5
	LHC Grid Computing Project
	DRAFT
	43 / 43

_1116937186.ppt

(…)

LDAP

V.O.

Packages

&

Commands

Perl Core

Perl Modules

External

Libraries

File & Metadata Catalogue

SOAP/XML

CE

SE

Logger

Database

Proxy

Authentication

RB

User Interface

ADBI

Config

Mgr

Package

Mgr

Web

Portal

User Application

API (C/C++/perl)

CLI

GUI

AliEn Core Components & services

Interfaces

External software

Low level

High level

FS

DBI

DBD

RDBMS

(MySQL)

_1121612879.vsd
�

�

URGENT!�

�

Information
Service�

Authentication�

Authorisation�

User Interface�

Grid Monitoring�

Workload Management�

Data Management�

Storage
Element�

Job Monitor�

Computing
Element�

Job Provenance�

Auditing�

Metadata
Catalogue�

File
Catalogue�

Package
Manager�

_1115395268.ppt

Broker

Authen

Logger

TransferBroker

IS

TransferOptimiser

Tier0

TASK QUEUE

CPUServer

ACCT

REMOTE

SITE

RemoteQueue

ClusterMonitor

Job

1

Process

Monitor

Job

1

Process

Monitor

Job

2

Process

Monitor

Job

n

Process

Monitor

ACCT

REMOTE SITE

or

ANOTHER

GRID

RemoteQueue

ClusterMonitor

AliEnServer

EDG/Globus

UNKNOWN-0.bin

_1116884085.ppt

GRID

ALICE

Virtual Org.

AliEn Grid

Another

Virtual Org.

AliEn Grid

Another AliEn Grid

Another AliEn Grid

Another AliEn Grid

Another AliEn Grid

