History Objects

P. Calafiura and S. Rajagopalan
16 October 2001 - Draft Version 0.1

Abstract

This working document describes our understanding of the requirements for Atlas His-
tory objects and provides a conceptual design for them. As part of our Data Model we want
to introduce three related History objects: the JobHistory to describe when and where a
job was run, using which release of the software; the EventHistory that will refer to the
JobHistory and will also allow to determine which input event data were used, and which
conditions and environment databases. Finally, the DataObjectHistory will contain specific
information on which Algorithms made a data object, and references to its Properties as
well as to the EventHistory object of the containing event.

Motivation

The purpose of the History objects is to capture and persistify the conditions under which
any given data object was produced, allowing to configure a job to reproduce that data
object.

The DataObjectHistory will also allow downstream Algorithms to select among mul-
tiple instances of a given data object based on their producer Algorithms (e.g. among a
ClusterCollection produced using a cone algorithm and one produced by a nearest neigh-
bour algorithm). At least in principle, the DataObjectHistory also allows to support a
“reconstruction on demand” execution model, where the producer Algorithm execution is
triggered by StoreGate upon request of a data object produced by that producer Algorithm
instance.

JobHistory
We need input from the production bookkeeping and database groups on that
Contents

e platform (hardware and op sys ID)

e  production date

e  producer (user ID or production ID)

e  atlas software release

EventHistory

See also DB architecture document[1]. We need the DB folks to help us understand what
the DB information below really is. One possible approach is the CDF one, where each
DB table has its own version and a “table of tables”, the ValidSet, inderes a complete,
validated set of tables that can be used for production or analysis.



JobHistory

+platform(:void
+productionDated:void
+proaducerlD:void
+releaseivoid

1

o7

_ 1 [Eventinfo
EventHistory 1

+jobHistory( lobHistary
+conditions(:DEInfo inputEvent may come BI
+environment(:DBInfo [~ — —| from Eventinfo header
+inputHistory():EventHistory

1 StoreGatesvc
o +record(d:T * h:Data0bjectHistory)]
DataObjectHistory Q.

1 1 |DataBucket

1.* 0.1
a1 AlgInstance EventLoopMaor
PmpertyMng = 0.1 Current
+codeRes|D:string +currentalgAlglnstance
+properties):PrapertyMagr

Figure 1: History objects entity diagram

Contents

e  Conditions DB information (ValidSet)

e  Environment DB information (ValidSet)

e Input Data Sources (may be part of the Event header)

e (a reference to) the JobHistory object of the producer job.

DataObjectHistory

We need input (from the Reco EDM group?) to provide use cases. There are already some
at [2, 3]

Each data object in the TDS is associated with a DataObjectHistory object. The
DataObjectHistory object can be used as a key to select a data object instance. There
must be an efficient way to navigate back from the data object to its history

Contents

The DataObjectHistory contains (references to):
e  the producer Algorithm(s) class version (presumably the cvs version)



e  the PropertyMgr object that holds the producer Algorithm instance(s) configura-
tion.
e the EventHistory of the containing event.

Creation

A default DataObjectHistory object that captures the configuration of the producer Algo-
rithm is attached by StoreGate to any recorded DataObject. To avoid doing this explicitly
in each StoreGateSvc: :record invocation, we need some kind of “execution context” with
a reference to the Algorithm instance that is currently running. The athena EventLoopMgr’
should provide that.

When a data object is the result of a collaboration among several (sub-)Algorithms,
the Property info of each of the producers must be appended to the DataHistoryObjects.

The producer Algorithm can override this default object with another instance (e.g.
with a derived one which contains additional informations, such as a different version of the
Calorimeter calibration) which would have to be explicitly associated to the data object,
presumably when this gets recorded into the store.

Identification and Lifetime Management

Like any other data object, history objects live in the transient store. Their lifetime is
strictly dependent on the lifetime of the data objects they are attached to, hence it seems
natural to store the history objects alongside their data objects.

A unique identifier for the DataObjectHistory object is necessary. This can also be
used as the default key with which we record a data object. This identifier can be read in
together with the IOpaqueAddress - the DataObjectHistory object will be read in only on
demand, much the same as the data object. A mechanism to generate this unique identifier
still needs to be worked out. 32 bits probably is not sufficient.

Using the DataObjectHistoryObject

Since the DataObjectHistory identifies the data object is associated with, it must be pos-
sible to use a DataObjectHistory instance as a key in StoreGateSvc: :retrieve.

StoreGateSvc: :retrieve may also take as an argument a predicate to select data
objects based on the contents of the DataObjectHistory object. A simple example of such
a selector would be one that matches the name of the data object producer Algorithm with
a StringProperty specified in the job options. Notice that this selector needs to load from
persistency only the history objects and not the associated data objects.

Persistence

The DataObjectHistory object can be read on demand with the usual DataProxy/converter
mechanism. It is worth noticing that the history object may be persistified even if its
associated data object is not.

The SG+DB groups will provide converters for the default DataObjectHistory class.

It remains to be decided who owns what in persistent form. For example should the
algorithm properties be persistified with the DataObjectHistory object or should they be
stored in a separate “Property” database and the DataObjectHistory object only contains
a reference to them.

What can we have for 3.0.0

need feedback from reco group on priorities

We don’t expect to have anything more than a crude DataObjectHistory. No persistence
support. Most likely the aforementioned mechanism to create a default DataHistoryObject
automatically from StoreGate won’t be in place. In this case it would be the Algorithm



developers responsability to explicitly instantiate (or retrieve and update) an history object
and to associate it to the recorded data object explicitly using the API that later on will
be used to override the default creation.

We hope to provide the selection mechanism to get a data object given its producer
algorithm.

This limited scope will at least provide a testing ground.

References

[1] http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/event_store/
ev-arch-index.html

[2] http://www.usatlas.bnl.gov/"dladams/data_history/

[3] http://www.hep.ph.rhbnc.ac.uk/atlas/newsw/and/hlt-design-draft-0.9.ps



