CTEST 2.00: an interface for building C++ packages

David L. Adams
Rice University
April 9, 1999

CTEST defines an interface between packages of C++ software and code
development environments. Organizing code in the prescribed manner
facilitates porting between different experiments and between different
platforms within an experiment.

Introduction

Developers of C++ code devote considerable attention to logical design: the choice of
classes and their responsibilities, associations and relationships. Typically less attention is
paid to the physical design: how classes are assigned to files and files organized into direc-
tories, the contents of libraries and how testing is carried out. This physical designiscriti-
cal for large-scale systems.

Of course, the developer is eventually forced (if only at implementation time) to make the
physical design choices. Typically many of these choices are driven by the developer’s
current desktop environment and conventions of the current experiment. There will likely
be a need to reorganize the code when moving to a new environment. This may occur
when the current experiment opts to add a new platform or when it is desired to use the
code in another experiment or domain.

Here we define a convention for physical organization of both the code and the instruc-
tions for building. Developers organize their software in this manner and each develop-
ment environment is responsible for providing an interface capable following these
instructions.

Code organization

We have adopted many of the ideas and much of the terminology in the book by John
Lakos:. “Large-Scale C++ Software Design” (Addison-Wesley, 1996). Any developer of a
large-scale system is encouraged to read this book.

We assume the code is organized into files. The fundamental unit of our software organi-
zation is the component which consists of a header file, an implementation file and a test
file. The second of these contains the source which is compiled into a bare object or
library. It includes (through the preprocessor directive #include) the header. Thetest fileis

a main program which tests the header interface and implementation source and returns
zero if all tests are passed. Typically one class and associated free functions are assigned
to a component.

A large-scale system will consist of hundreds or thousands of components and is made
more manageable by grouping related components into packages. The code and instruc-
tion files for each package are contained in a separate directory and each package contrib-
utes objects only to its own library. This is also a natural divison for management:
typically each package is the responsibility of avery small number of developers. A typi-
cal package might have five to ten components.

It is often useful to continue the organization by grouping packages into subsystems. Pres-
ently CTEST is only defined at the package level. The instructions for building are spe-
cific to each package.

In addition to components, a package may include stand-alone headers, additional tests,
sources to be compiled into binaries and scripts. The package directory may be divided
into subdirectories for purpose of organization or to apply different instructions for differ-
ent pieces of code. All the library components must reside in the same subdirectory.
Everything in the package directory including subdirectoriesis considered to be part of the
package and all files which are part of the package are contained in the directory.

Dependencies

Lakos emphasizes the importance of maintaining acyclic physical dependencies both at
the component and package levels. This makes it possible to build in dependency order
and test each component and package individually. CTEST does not specify the order in
which packages are built but it does specify the order of components within a package.

Packages may depend on one another though included header files or through libraries.
Headers in other packages are made available using the standard include mechanism
where the first directory in the include file name is the package name.

Build instructions

Theinstructions for building a package are taken from instruction files within the package.
Table 1 lists the actions which are carried out and the instruction files on which each
action depends. Those instructions that apply package-wide and appear in top-level pack-
age directory are marked with asterisks. The others apply only to the subdirectory in
which they reside.

File extensions

There are many conventions for C++ file name extensions and CTEST does not impose
one. Instead, the three files HXXTYPE, CXXTYPE and TXXTY PE specify the exten-

Action Relevant instruction files

Header installation HEADER_DIR*, HXXTYPE*, INCLUDE_TY PES*,
INCLUDE_FILES*, INCLUDES

Library dependencies | LIBDEPS*

Library build COMPONENTS, CXXTY PE*

Component testing COMPONENTS, TXXTYPE*, CTEST_DIR*
Object build OBJECT_COMPONENTS, CXXTY PE*
Integrated testing ITESTS, OBJECTS, LIBRARIES, CXXTY PE*
Binary build BINARIES, OBJECTS, LIBRARIES, CXXTY PE*

Script installation SCRIPTS

Table 1: CTEST actions and associated instruction files. Those marked with asterisks
only appear in the top-level package directory.

sions for header, source implementation and test files, respectively. If any of these filesis
missing, then the respective default .hpp, .cpp or _t.cpp is used. These files may only
appear in the top-level package directory and apply to al instructions and all subdirecto-
ries.

Processing subdirectories

For al actions except header installation, instructions may reside in the top-level directory
or any subdirectory. For the latter actions, each of the subdirectories listed in instruction
file SUBDIRS is processed after carrying out the action in the current directory.

Header installation

Instructions are provided to publish include files, i.e., specify which files are to be made
publicly available for inclusion in other sources. Sources in other packages may include
such files as if they were in a subdirectory with the name of the originating package. For
example, the C++ header DemoClassl.hpp from package demo isincluded as follows:

#include “demo/DemoClassl.hpp”

An implementation is free to choose how these files are made available: it may make cop-
ies, links to individual files or links to directories. It is allowed (but not encouraged) to
make unspecified files available in this manner.

All the include files in a directory (and its subdirectories) may be published by listing the
directory in HEADER DIR. All files in that package subdirectory with the HXXTY PE
extension are published. If additional extensions are listed in INCLUDE_TY PES, then the
corresponding files will aso be published. Files in subdirectories of the header directory
are made available including that directory path. An implementation might choose to pub-
lish the header directory by linking it to the package name in a directory which is part of
the compiler include path. An implementation may define a default value to be used if the
HEADER_DIR instruction is not provided.

More precise control may be obtained by listing individual include files in the top-level
instruction INCLUDE_FILES or in the local instructions INCLUDES. The former lists
filesincluding their path relative to the top-level package directory. The latter smply lists
files in the local directory. In both cases the file are made available as if they resided
directly in the package include area; their actual location in the package hierarchy is not
apparent to external packages.

Library dependencies

Each package builds at most one library whose name is the same as that of the package.
This library will generally depend on other libraries, i.e., there are other libraries which
are used by the objects contained in the package library. These libraries are listed in the
top-level instruction LIBDEPS. Whenever the package library is used for linking, all of
the libraries listed in LIBDEPS are listed after it on the link line. Thisis done recursively
so it is not necessary (but is allowed) to list libraries which are dependencies of libraries
that are already listed.

Libraries are not allowed to have cyclic dependencies, i.e., if one library depends on
another, then the second is not allowed to depend on the first. This applies to both direct
(listed in LIBDEPS) and indirect (inferred from recursive LIBDEPS) dependencies

Library build

Thelist of library components is taken from instruction files COMPONENTS. The exten-
sions specified in CXXTY PE are appended to the entries in this list to obtain the respec-
tive names of the source files. The sources are compiled and archived in the package
library. Depending on the compiler and environment, the list of libraries (derived from
LIBDEPS for the current package) may also be provided to the archiver.

Components should not acyclic dependencies and should be listed in dependency order,
i.e., any component should not depend on those following it in the list. Thisis typically
not relevant for archiving but may be required for component testing.

Components may be distributed among multiple directories with a COMPONENTS
instruction in each. However there is no guarantee as to the order in which the directories

will be processed so componentsin different directories should not depend on one another.
Typically a package will have only one directory containing components.

A package which has no COMPONENTS files does not build alibrary.

Component testing

A test file defining a main program must be provided for each component. The names of
these files are obtained by appending the value from TXXTY PE to the component name.
If the file CTEST_DIR appears in the top-level package directory, then the test files are
found in the subdirectory listed in that file. Otherwise (and typically) each test filesresides
in the same directory as its component source.

The tests are compiled and linked against the package library and its dependent libraries
derived from LIBDEPS. The library may only be partially constructed at this point but is
guaranteed to contain the current component and all those listed before it in the current
COMPONENTSfile.

The resulting executable is run using a component test script which is obtained from one
of three locations. First the directory containing the component test is checked for afile
with the same name as the component and the extension .sh. If that file is not present, then
that directory is searched for the file run_component_test.sh. If neither is present, then a
default script is used.

Test scripts are described in a later section. This test is considered successful if the script
returns zero. The default script runs the test executable and returnsits return value.

Object build

The list of object components is taken from OBJECT_COMPONENTS. Agan
CXXTYPE is appended to each entry to obtain the file names. The files are compiled and
the resulting objects are store in a common area available for linking in other packages.
Component testing is not carried out on the assumption that these components will be sim-
ple stubs which force the loading of alibrary component which has been tested.

Integrated testing

Integrated tests are intended to check behavior which cannot be checked during compo-
nent testing. This might include interaction with acomponent or package on which a com-
ponent is not usually dependent. The list of integrated test sources is taken from
instruction file ITESTS. A source file name is obtained by appending CXXTY PE to each
entry. The source is compiled and then linked against the objects in OBJECTS and the
libraries in LIBRARIES extended using the LIBDEPS mechanism.

As for component tests, this executable is run using a test script which returns zero for
success. The script obtained by appending .sh to the test name is used if present or, if not,

then the script run_integrated test.sh is used. If neither is present, then a default script
which runs the test and returnsiits return value is used.

Binary build
Theinstruction file BINARIES contains alist of binariesto build. CXXTY PE is appended
to each entry to obtain source file name. The source is compiled and the linked against the

objects (OBJECTS) and libraries (LIBRARIES extended with LIBDEPS). The resulting
executable isinstalled in acommon binary area.

Script installation

Scripts are copied from the package to a common area. The list of such scripts is taken
from the instruction file SCRIPTS.

Test scripts

Component and integrated tests are run with atest script which is run from a POSIX (sh)
shell. The test is considered successful if this script returns zero. A successful test should
not write any output to standard out or standard error.

The default scripts run the executable and return its return value. Output written to stan-
dard out is redirected to afile. Users may provide their own scripts to provide input files,
check output files oar carry out any other action.

Test scripts are provided the following arguments: the name of the test executable, the
directory containing the sources from which the executable was built, and alist of directo-
ries where packages may be found. Thefirst directory in the latter list isthe one containing
the current package. Figure 1 contains a script fragment: showing how to extract these val-
ues.

The directory for the current package curpkg is
CURDIR=$TOPDIR/curpkg

The top-level directory for any package may be obtained with the command ctpkgpath.
The directory for package extpkg is

EXTDIR="ctpkgpath extpkg $TOPPATH"

It isarequirement on CTEST implementation that they provide the script ctpkgpath with
this behavior.

First argument is the executable name.
EXE=$1

Second argument is the source directory.
SRCDIR=$2

Third argument is the current installation directory.

If package pkg isinstalled locally, itstop level directory
#is $TOPDIR/pkg.

TOPDIR=$3

Arguments 3-N specify the search path for packages.
It consists of directory names separated by spaces.

The script ctpkgpath will echo the first instance of the
package directory along the path.

If not found, it will return nonzero and write to stderr.
shift 2

TOPPATH=$*

Figure 1. Test Script fragment showing how to extract command line parameters.

Extending theinterface

CTEST includes generic capabilities that we have found generally useful. With the excep-
tion of script installation, all apply to the construction of C++ software. We have tried to
strike a balance between avery limited interface which would be useful to few developers
and an extensive interface which would put a great burden on anyone trying to port the
interface to a new environment.

Inevitably, there will be request for additional capabilities. Some of these will be specific
to a particular experiment while others may be more generally useful. By its nature,
CTEST is easily extended—one only needs to add additional instruction files. Implemen-
tations which do not handle the extension will simply ignore these files.

Conclusions

CTEST provides an interface for the organization of C++ code. It is easy to use, supports
good physical design principles. Its scopeis sufficient for thistask but is limited enough to
allow implementation in awide range of code development environments. It isalso easily
extended if any unanticipated needs should arise.

CTEST versions

Version 2.00

This document describes version 2.00 of the CTEST interface. The major changes are the
addition of the LIBDEPS mechanism and the extension of the specification of include
files. In addition, the structure of test scripts has been clarified. Except for the title and this
paragraph, it is the same as the April 9 draft document.

Version 1
The original interface was presented at CHEP98.

Further information

For updates and further information about CTEST, please see the CTEST home page at
http://www.bonner.rice.edu/adams/ctest.

