
AutoPyfactory (a.k.a APF)

Current version:

Current version used in production at BNL factories is 2.4.1, installed from RACF repository:

http://dev.racf.bnl.gov/yum/grid/testing/rhel/6Workstation/x86_64/

It is also in the OSG development repo:

https://koji-hub.batlab.org/koji/packageinfo?packageID=374

built as a single RPM.
This version installs the configuration files under the documentation directory, with filename ending
with -example:

ll /usr/share/doc/autopyfactory-2.4.1/*example
-rw-r--r-- 1 root root 6184 Oct 8 2014 /usr/share/doc/autopyfactory-2.4.1/autopyfactory.conf-example
-rw-r--r-- 1 root root 1082 Oct 8 2014 /usr/share/doc/autopyfactory-2.4.1/mappings.conf-example
-rw-r--r-- 1 root root 732 Oct 8 2014 /usr/share/doc/autopyfactory-2.4.1/monitor.conf-example
-rw-r--r-- 1 root root 5625 Oct 8 2014 /usr/share/doc/autopyfactory-2.4.1/proxy.conf-example
-rw-r--r-- 1 root root 47105 Oct 8 2014 /usr/share/doc/autopyfactory-2.4.1/queues.conf-example

Same for the logrotate config files and sysconfig config files.

Next steps:

Not everything equally important. And not necessarily everything to be included in the next release.

• Split the RPM into multiple packages. Still to be decided how many, and the content of each
one of them.

• Install the configuration files directly into /etc/autopyfactory directory. Users don't feel
comfortable with the idea of copying them from the doc directory.

• Re-factorize the way the configuration directory queues.d/ is being used. It should be the UNIX
standard behavior, which is not right now.

• Make the code reading the configuration another plugin category.
• Re-factorize code to allow more than one internal queues to cluster and work together.
• Introduce the HTCondor python bindings.
• Improve the documentation.

From now on, we commit to release backward compatible versions. When not possible, the name of the
package will change (i.e. autopyfactory3).

Wrappers and glideins:

Wrappers are not exactly part of AutoPyFactory, but they come together, as they are the executable
being submitted to the sites via condor-g.
For ATLAS there are currently 2 wrappers: one used in OSG and one for the rest of the world. The
latter one is a single file written in bash. The OSG one is composed by a first part in bash and a series
of plugins and core code in python. The OSG one is currently under re-factoring, with the ultimate goal
of merging both wrappers.

http://dev.racf.bnl.gov/yum/grid/testing/rhel/6Workstation/x86_64/
https://koji-hub.batlab.org/koji/packageinfo?packageID=374

In this plugin-based architecture, the intention is to have another plugin being a glidein. There is no
stand-alone glidein code provided by HTCondor team. Several people have created their own, usually
based on what BOSCO does. We also started a new one, written in python. And the HTCondor team is
working on a new stand-alone one based on the master daemon. No ETA. Our current plan is to have a
look to the existing ad-hoc ones and see what they have in common and try to write a more generic
one.

Customers:

Currently being used by ATLAS and AMS, both VOs based on PanDA.
Our next potential customers are:

• GLOW VO. For that we need a glidein that can be submit by the factory.
• ICECUBE VO. Plan is to start by reusing their glidein.

