A Language-Independent Overview

Unit Test

Frameworks

|q-|'l"].|1'|-'-

Lo,

-.':-;f;;:'.rqﬁﬁw;}:ﬂ:s_.. .

D’ REILLY' Perntl Henilf

Table of Contents

[67070),7 1 14 1 | TR |

Preface.. 1
ALAIEIICE. ... eeveeteeieeeteeeteeeteecteeeteeeteesteeteeseeseessesssaesseessassseessesssasseeassesseassessensaenssanssenssenssersaeessensaensaesseesssasseessaesseassensseasseesseaseeessessenssessensserssenseensaenseensaensesnsesnsanns 1
Contents of This Book................
Conventions Used in This Book....
Using Code Examples...................

e

How to Contact Us........

ACKINIOWIEAZIMENLS. ... eeeieeiiieieeieeieeteetee e et eete st e st e st e st esstesstasseesssasseesseasseaassesssasssesssanssanssesssaassesssenssesstenssenstenseenssesssenseesseenseesseesseenseesseensessseesseesseesseenseenseensannne 1
Chapter 1. Unit Test Frameworks: AN OVeIrVIEW.....ccccicieieiecenesssrcssecececssssssssscsesesssssssssssssssecese 5

Section 1.1. TESt DITVEN DEVEIODPIMENT......cc.cccveiirieriertiriesereetetetetestestessessessesseestestessessassassassassassssssessensessessessessessesssestessessessessassessessessssssessessessassessessessesssessessenses

Section 1.2. Unit Testing and Quality Assurance.

Section 1.3. Homegrown Unit Testing.........cccccceeverereenenne.

Chapter 2. Getting Started: Tutorial......ccccceieiiiiiiiieiecicierececericricececassssececessssosesecsssssssesessssssssess 11
Section 2.1. Outline of an ApPlication: the VITTUAL LIDTATY.......ccccieireriiriiriiiterienteseseseseeeetestestestessessessessesssssssssessessessessessessesseessessessessessassassassassassasssessessassans 12
Section 2.2. Example 1: Create a BOOK.........ccoceveeeeervuennenne

Section 2.3. Example 2: Create a Library

Chapter 3. The xUnit Family of Unit Test Frameworks......ccccceceeiiiiececececicrcecececacscsecececasasseee 22
Section 3.1. XUNIE FAMILY MEIMDETS.cccteriririeieieiteresestestestestesestestessessessessesssessessessassassesssessessessesseessessessessessesssessensessessesseessessessassessesssessessessessesssensassassanss 22
Section 3.2. xUnit Extensions.............. 23
Section 3.3. The xUnit Architecture... ..
Section 3.4. xUnit Architecture Summary34

Chapter 4. Writing Unit TeStS...ccciiriiiiiriieriirrastirececriresscrecesscrecssscsessssesessssessssssesssssssssssssssses 36
Section 4.1. Types of Asserts

Section 4.2. DEfiNING CUSTOM ASSEITS. ...cccueiiieerierrieeieeiteeteesterteetesteetestesseesseesseasseessessseessessasssesssesssesssesssasssesssesssesseesseesseesseesseesseesseessesssesssesssesssesssesssesssesssesne 38
SeCtion 4.3. SINGLE COMAITION TESES...ccueeerireriiiertertirtieesteeeetertestestestessessesseestetessessessassassassessesssessessessessessessesssessensessentessessessessssssessessessessessesseessessensensansassassanss 39
Section 4.4. TESHNG EXPECLEA EITOTS.....cceeieierierierirteitertesttetetestestesse st estestesae st estetessessesstessessessesstestensensessesstestensensesstestensensessesseentensessesseestensessessessasssessensessans 41

Section 4.5. (Not) Testing Get/Set Methods.... .
Section 4.6. Testing Protected Behavior....... g2
Section 4.7. Test Code Organization....... e dd
Section 4.8. Mock Objects...................45
Section 4.9. AbstractTest.............. ... 48
SECHION 4.10. PEITOTINANCE TESES.....uiecterireeiteeiteeieeteetesteseesttesseeeseesseseseasessasssesssesssesssessseassesssesssessassssessssssesssesssesssesssesssesssesssesssessessssessessseensesssesssesssenssesssensessen 51

Section 4.11. New Library and Book Code.........ccceecerereeceeneeneenierieeeenee. e ettt et e eeeeteeeiteesereeeeeeeeeiseeeeiseeeeteeeabeeearaeeaanraaans 53
Chapter 5. Unit Testing GUI ApplicationsS....c.cccccieiiieiceiececesicrccececacasscsececssssssssecssssssssesesssssses 55
SECHON 5.1, LIDTATY GUL....c..ciiiiieiieiieieciesiesestestestesteetestestessessesssessessassasseessassanssassesssessensessesssessensessessssssessessessesssessensessesseessessessesseessessessessesseessensensesseessansassansanss 57

Chapter 6. JURNIt . .cciiiiiiiiiiiiiiiiiieiiieiiecsiressiresscresscsesscsesssessssssesssssssssesssssssssssssssssssssssssssssssss 07
Section 6.1. Overview.
SECHION 6.2, ATCRITECIUTE. ... uviiiiieeeiieeeie et ee et eeteee it e eetteeeetteeeteeeeseeeeaseeasteeesaseessaaasasaassaseasssaenssaeasssesasssaesssesassseensssaassaeesssessssaaassaeansaseesssanasssesnseseasssanaseaannses
SECHION 6.3 USAZE....eeeueerueeeuieriterieeiieeiteesieesteesteestestestestesatesstessesaseesseessaesstessaesstesseesssesssesssesasessesnsesnseenseesseesstesssesstesssessesnseensesnsessstenseenseesseesssesssesssesssesssesssasns
Section 6.4. Test Assert Methods

Chapter 7. CPPUNIL..cciiiiiiiiiiiiiiiiiieieieieiecececcesescscscssssssssssssssssssssesssssesessssssssssssssssssssssssssssssasesese 74

SECHION 7.1, OVEIVIEW. . eeeuveeueeiteeieeeiteeeteeseeeteesteesteesseesseesseessessseassesssesseessesnsessessseensessesseansessseessssssesaseessesasesssesssesnsesssessseessesssesssesssessseessessseessesssesssesssessseessessseees 74
SECHION 7.2, ATCHITECTUTE.cuveeveecteeiteeetieeteeteeiteeteeteeraeeeteesseesseesseesssessseasssessaesssasssersaanssessseassaassesssansseassaessaesssenssenssansseessansssessansseesssensaenssenssenssenssesssenssesssasssennen 74
Section 7.3. Usage
SECHION 7.4. TESt ASSEIT IMETNOMS. ...c. ieeuiieieeieeieeieete e ettt et e e et eesae s st e e ste e ae e teesseesseesseese e seesseaseanseesssaseeseenssaassasstasseeaseasssesssesssasssesssasssesnsesnsasssesnsesssennen 83
Chapter 8. NUnit.. 84
SECHION 8.1, OVEIVIEW.....euteruiieieiiieeittirieesitestesiteeteste st este st esatestessteessesateesseessesaseeseeseeseesseensaestesseasstesatesstesssesstesasesnsesaseessesnsessseenseenseenseensesnseesseesseesseesssessennen
Section 8.2. Architecture.
SECHION 8.3. USAZE. .. e euveurereruiruteterteeueeitetestestesse st et e ste s bt e st e st et e besse s st e st estesbeeseese e st eabesseest e st et et e b e e st e st e a b e beebe e st e st et e b eeseeateat e b e be e st enteat e b enbesseeatentensesbeententensensenseras

SECHION 8.4. TSt ASSEIT IMETNOMS.eeiteerieieeiecteeteeeeee et ete et e rteeteesteetbesteeetseeseesssesseessaesseassesssessseassessarssessaesss et aesseessaasseassesssenseensaenssensaenseensanssenssenssenssensenns 90

Chapter 9. PyUnit...ccccieiiiiiiiiieiiiiiieiiiiieiiiiesiircessiresscscesscsessssesssscsesssscsssssssssssssssssssssssssssssssses 92
Section 9.1. Overview .
SECHION 9.2, ATCRITECIUTE. ... ueiieiiieeciieeeiieeet et et eecteeee et e e eteeeetteeeseeeesaseeasaeeesseeesasaasssaassseeasssesssaaasssesnssaaasssessssseassseensssaesssesaseseesssaanssaeassaessseaanseesassseensaannssasns
SECHION 9.3, USAZE. . eeeueeruteeuierierieeteriteesteestteseestesstestestesstesstessesasaeseessaestessaesstesssesasesaseessessesastenseenseenseesstesssesssesssessesseenseenstenseesstesssesssesssesssesnseessessseenseensanns
Section 9.4. Test Assert Methods

Chapter 10. XMLUnit.............................I......I......I......I......I....l.l....l.l....l.l....l.l....l.l....l.l....l.l 101

SECTION 10.1. OVEIVIEW. ... eeieuriieeiieeeteeeitteeeiteeeeteeeiseeeeessesesseaassseeasesaassaeasssesassseesssasasssesassseessesasssssasssessssaasssesasssesessseenssesasseesesssesssesasssesesssesnssesenssesasssessssasssees 101
SECHION 10.2. ATCHITECIUTE. ..c.veeuieiieieeteeieterteseete et estes e et e stesteste et e st estassasseessessassasseessessassassesssessensenseestessensassessssssensesseessessessessessesssessensesseessensensensasssessensensesses 102
Section 10.3. Usage
SECtiON 10.4. TEST ASSEIT IMETNOGS. ... ueeveiieeiieiteeieecteetee e e tee e e te et e et e st e e te e te st e e eessteestesstasssesssasssesssasseeassesseasseesssasssesssasssasssesssanssesstenssenssesssenssesssenssenssenseennen 110
Chapter 11‘ Resources............‘..............................‘..........‘... 114
SECHION 11. 1. WED SIEES..cuuieuiiieriiriirieiesieseseetestestesteestestestessesseessessessesseessessassassessssssessessesssessensessessssssessessesseessessessessesssessensesseessessensassesssessensessesseessessansassasssensans
Section 11.2. Discussion Groups... .
SECTION 11.3. BOOKS. ... utiiiiiiieiieeciee et eectt et ee e ee et e ettt eeeteeeettee e saeeetsseeesasaessaeeasssaeassaaassaeeasssaasssaaassssssssaessasassseensesaesssasnsseessssesassseanssseasssesasteaanseesasssenassaannseennss

Appendix A. Simple C++ Unit Test FrameworkK....cccccceieieieiececenesinicacicrcrcscccesesececececececesesssses 117

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

ComparisonFailure
PTOTECTADIE. ... eeiieeeieeieetteet e teete e et e e et e e et e te et e e te st e e te st e e seessaesseensesnsaensesasaanseansesaseanseenseanseansssnseenseenseanseasseanseessanseensteseaseenseeseenstenseanssenseenseenstesssanssessees

TESECASE. .. eeeeeeuereeieeiiteeeeeettteeeestteeeeeeateeesesteaeeesuseeeesesssrassssssseeasssssaesesssssaessssssssesesssssesssssssesesssssssesesssssesesssssseesssssssesesssssseesssssseeesssssssessesssseeesssssseessssssseessssssanans
TESTFAIIUTE.cceviieeieeceee ettt eete et e e ette e et e e te e et teeeeseeeeseaaesseeeasasassaaaassseeassseessaaassaassssaessaasssssansseeassaeanssaeensessasssannssaaassessesbesensaeeasseessasaenssasasseesnseeannsaesssens
TestListener. .
TESTRESUIL.ecuveeireeiesieetesteetesteeeteesteeteetesteesteaseaasaesssessaasseassasssesssaassesssasssesssaassaassesssasssesssasssassaasssensassseassssssenssssssenssensessseessessseessesssesssesssenseessesnseessessseessenssennes

TS TSUIEE. ..eeveeeeiieeeieeeeiteeeteeeeteeeteeeeteeeetteeeteeeeseeeesssaeassaaasssesseaaassaaansassasssaasssaassssaasssaesssaanssseanssessssaasssessesaassseanssssessseesssesassseessseessaaasseesnseseesssaensseeasseenssaannsseess

AutoRegisterSuite....

CompilerOutputter.. .
EXCOPIION . euttiiteitettete ettt ettt s e st st e e bt et e e bt e st e st e s tesa s e aeess e e st ense e seesse e b eeaee e et e eatesa s e st e e st e bt e st e bt e st et e et e eabaeateeateeae e e Rt e bt e st e be e bt et e et e e teeabesaaesatessaensaens
EX P IO I TP, ¢ veeurietteiteitecte et et st et e et e st e ete st e e st e et e s s e e st s b e s st e s e eebe e st e s e e st e se s st e nt e st e e st e sateeseesasesaseeneesatesaseease s et e e s e e et eeast e s e e st e st e s e e neesat e neesntesaeeeneesanens
ExpectedExceptionTraits.. .145
NamedRegistries............ ..147
NotEqualException..148
OTTROAOX. . tetteeuteeieeiee e esteete et e st e ste e e e ste e te et e esae e st e e ae e se e seesse e seaseasssanseanstanssanseesssanssesssessaassesssansseassessseassasssesnsesssasssesnsessseassesasesnseensesnseanseeseenseesesnseesseensesnse
OUEPULEETttt ettt st e e bt e e e a bt e s bt e s e bt e e bb e e s st e s sb e e e st e e eae e e e sbeeea st e s sateea s e e e ams e e s st e s ea b e e e st e e easbesenbeeeabeeeems e e e nteeeasee s anb e e e st e e anbeessaeeenseeenbeas
RepeatedTest.. .
SOUTCELITIE.veeveeveeieeiteeteestesitestesseeestesseesseessasseessesssasssesssasssesseanseesssanseenssensesnsesnsesssesnsensessssesssesssessesnseensesnsesssesnseessesseesssesssesseesseenseessessseessesssesssesssenseesseenseenses
SYNICHTONIZEAODIECL. ... eeveviereeieeieiectestereseetetestestestesaestetessessessessesstessessassassassasssessessersessesseestessessensensessesssessensensessesseessestensensensessesseessessensessesseessessensansansassanns 154
SyNChIoNiZEAODIECt: i EXCIUSIVEZIOME.c..eitererrerirteterieeteete ittt e st st et e te st estestesut et e bessesse s st estestessessesseeste st esessesatentest et esbasseestestensessesstentestensensassesstessensersessann 155
SynchronizedObject::SYNChrONIZATIONODIECT.c.eiutiiiiiieetieteteeer ettt sttt ettt et s bt st e st e s b e s bt e st et et e b e e bt s st eabesbe st e st et et e besbesatentenbensesseententanse 156

TestDecorator.

TestFactory.............. .162
TestFactoryRegistry. .163
TESTFAIIUTE. ... eeeveeeieeetieetieeeeet e et e et e e teeteeteeaeebe e seesbe e seese e baesssessaenssansaeasseseaassansseassesssaassesssassseessesssaansseasaasssenseenssanssenssanseenssensaerssessanseeassensseessenssenseesssenssennses 164
TESEFIXEUT . c..eevteeueeeiteeiteeteeteete et e e et s e et e st e st e sateeueesatesatesaeesateeaeesatesaeeemee s st eeaeesat e e st eeasesaseeneesateeaeesasesaeeeaseeasesaeesateeneesaseeaseensesaseeneesaseeseesasesasesnsesasesneesasesasesnses 166
TestFixtureFactory... .168
TestListener.......... .169
TestResult................ .169
TESTRESUITCOIIECTOT eeuveeieeieeteeteeteete et e st ee e e st es st eseeesteesse e seesseessesnseensesssaessesssasssasnsanssesssasssanseenssansterssastenssanssesseeseenseensesnsesnseansesnsesssesssesssenssesssenssenssenseennen 170
TESERUIIIIETcce e itieeieitee ettt ettt ee ettt e e se sttt e ee s taeeesesbaaeeeesassaaeessssasaeesssssaeeesassaaeeasssssaeessssseseesssssssesessssesessssssseessssssesesssssssseessssseeeeenssseesssssseeeesssssseeessssnesenssnns 172
TestSetUp .
TS S UCESSLISTEIIETeeieieeeeiiieeiteeeteeeeteeeeteeeitee e teeeestee e seeeesseeessaaasseeasssaessasssaeasssaassaaasssesnssasasssaassaeenseseesssaansaesassseesssaanssaessseensaaaassseensaesesssaassseessesassesanseesnses 176
ST SUIEE. .veeeuvreeiiieeteeete e ettt ee it e et e e s bt e e tae e e tee e baeeesbeaeseseesssee e saeaassaessssseassaeassseanssaesnsasaassaeesssseassaeessseaassaeassaeeassseensseensssesnsseenssesansseaassssasssenssseenssesasseeessasenssseensens 177
TESESUITEBUILACT ... eeeteeeiieeteeteecteeite e tee st e st es e e e tesete e aeese e seese e saaaseessaeasseassesssassseassaenseasssenssaasseassansseanseasseasssenseeseanssesssansseassassssassesssasnssenseenssenssesssensseessenssennes 178
TSt SUITEFACTOTY ... eveuteteteteeteette ettt ettt ettt et et e et et et et e b e b e e b e st et e st e b e b e e st e st e st et e b e b e e b e e bt e st e at e b e b e ebeeseeat e st e ae et e b e b e eseeateat et e b e sbeeatentent et eaesasennens 180
TextOutputter

Xt TSt P TOZIESSIISTEIETceueeruieeeerieeteeteete et et et st e et e e st e st e st esaee st esueesase s st e saeesatesseesatesaeeeneessteeneesateeseesae e seeente st e st e st e st e st e seesstensaeneeseentesaensessneesanen 182
TEXETESTRESUIL. ..ccuveeeieeeieeteeieeteet e et e et e et e s te et e ettt ete s teeae st eeseesseesseessesnseanseensassseasseasseanseesssenseessanssanstenssenssesssansseaseessseassesssenseesssesssesssesnsesnsesssesnseensesssesnsesnsen 183
XmlOutputter...........184
XmlOutputter::Node.......coceeeevererrerveereereereeneenaens e e———185

[070] [071) 1 1) o VPR L+).

DVAINAEXINA@X. . eeieiieeereerececcerencacocecssscscscecessssscscscessssssssscsssssssssssscscssssssssssssssssssssssscsssscscece 103

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Preface

This book presents a comprehensive review of the xUnit family of unit test frame-
works, including their usage, architecture, and theory. We begin by building a sim-
ple unit test framework from the ground up. The xUnit architecture is presented,
using the JUnit framework as the reference implementation of xUnit. We progres-
sively build an example application to demonstrate common practices and patterns
of unit test development. Several popular versions of xUnit, including JUnit, Cpp-
Unit, NUnit, PyUnit, and XMLUnit, are covered in detail. Detailed class references
are provided for JUnit and CppUnit as appendixes.

As a software development methodology, unit testing incorporates many rules and
guidelines. However, writing unit tests is an art, not a science. Once you are familiar
with the unit test driven approach to development, rigidly following its rules is
optional. The true value of unit testing is in the focus on low-level software quality it
gives developers, rather than as a formal process.

Audience

This book is intended for software developers, technical managers, and quality assur-
ance staff who are learning about unit testing and agile development. Agile develop-
ment is the wave of the future in software engineering, and many technical
organizations are adopting it. Using unit test frameworks to enable test driven devel-
opment is a key to becoming agile.

Contents of This Book

Here is a summary of the topics covered in each chapter and appendix:

Chapter 1, Unit Test Frameworks: An Overview
An overview that explains what unit test frameworks are and how they are used.

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 2, Getting Started: Tutorial
A tutorial that creates a simple Java test framework. This provides the funda-
mentals of how unit test frameworks work. Appendix A contains the C++ ver-
sion of this simple framework tutorial.

Chapter 3, The xUnit Family of Unit Test Frameworks

A review of xUnit, using JUnit as a reference implementation to demonstrate

basic xUnit architecture and usage.
Chapter 4, Writing Unit Tests

An overview of writing unit tests. This offers a more detailed discussion of differ-

ent types of unit tests and patterns of unit test development.
Chapter 5, Unit Testing GUI Applications

A discussion of unit testing of GUI applications. This chapter explains how to

build and test GUI objects following the smart object model.
Chapter 6, JUnit

A description of the details of the usage and architecture of JUnit for Java.
Chapter 7, CppUnit

A description of the details of the usage and architecture of CppUnit for C++.
Chapter 8, NUnit

A description of the details of the usage and architecture for NUnit for .NET.
Chapter 9, PyUnit

A description of the details of the usage and architecture of PyUnit for Python.
Chapter 10, XMLUnit

A description of the details of the usage and architecture of XMLUnit for XML.
Chapter 11, Resources

A list of additional resources for unit test frameworks and related topics.
Appendix A, Simple C++ Unit Test Framework

The C++ version of the simple unit test framework from Chapter 2.
Appendix B, JUnit Class Reference

A detailed class reference for JUnit’s key package junit.framework.

Appendix C, CppUnit Class Reference
A detailed class reference for CppUnit.

Glossary
A list of definitions for important technical terms used in this book.

x | Preface

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates regular text and descriptions.

Constant width
Indicates commands, methods, attributes, data types, class names, or the output
from commands. It also shows the actual source code.

Italic
Indicates new terms where they are defined, pathnames, file directories, filena-
mes, and Internet names, such as email addresses, and URLs.

Constant Width Bold
Indicates source code that is being emphasized for your attention.

Code in this book is formatted as shown here to distinguish it from the rest of the
text. Code examples begin with the filename where the code resides.

MyClass.java
public class MyClass {

myMethod () {
int id = 3;
}

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Unit Test Frameworks, by Paul
Hamill. Copyright 2005 O’Reilly Media, Inc., 0-596-00689-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://'www.oreilly.com/catalog/unitest/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

My sincere thanks go out to my reviewers: Ron Jeffries, James Newkirk, Philip Plum-
lee, J. B. Rainsberger, Simon Robbie, and Anthony Williams. Their shared experi-
ence and advice was incredibly useful and encouraging. This book could not have
been completed without their help.

This book is built on the work of software pioneers. Kent Beck is the original author
of the xUnit architecture in the form of SmalltalkUnit. Ward Cunningham, Kent
Beck, and Ron Jeffries are the formulators of the Extreme Programming methodol-
ogy, which led to many of the test driven development practices described in this
book. Erich Gamma and Kent Beck ported SmalltalkUnit to Java to create JUnit, the
most widely used and extended unit test framework. Many individual developers cre-
ated and contributed to the different versions of xUnit, which are classic examples of
open source software, built by the collective efforts of the software development
community. The fingerprints of these talented engineers are all over the material cov-

ered by this book.

xii | Preface

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 1
Unit Test Frameworks: An Overview

Most people who write software have at least some experience with unit testing. If
you have ever written a few lines of throwaway code just to try something out,
you’ve built a unit test. On the other end of the software spectrum, many large-scale
applications have huge batteries of test cases that are repeatedly run and added to
throughout the development process. Unit tests are useful at all levels of program-
ming.

What are unit test frameworks and how are they used? Simply stated, they are soft-
ware tools to support writing and running unit tests, including a foundation on
which to build tests and the functionality to execute the tests and report their results.
They are not solely tools for testing; they can also be used as development tools on a
par with preprocessors and debuggers. Unit test frameworks can contribute to
almost every stage of software development, including software architecture and
design, code implementation and debugging, performance optimization, and quality
assurance.

Unit tests usually are developed concurrently with production code, but are not built
into the final software product. The relationship of unit tests to production code is
shown in Figure 1-1.

Application Unit Test Framework
test
Objectl |<<1q-- - Object1Test
test
Object2 |<-q-- R - Object2Test

Figure 1-1. Production application and unit test framework

An application is built from software objects linked together. The unit tests use the
application’s objects, but exist inside the unit test framework. This approach has a

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

number of nice aspects. The production code is not cluttered up with built-in unit
tests. The size of the compiled application tends to be kept smaller for the same rea-
son. The tests can be run separately from the application, so the objects can be tested
in isolation.

A single unit test should test a particular behavior within the production code. Its
success or failure validates a single unit of code. Well-written tests set up an environ-
ment or scenario that is independent of any other conditions, then perform a dis-
tinct action and check a definite result. These tests should avoid dependencies on the
results of other tests (called test coupling), and they should be short and simple. By
starting with tests of the most basic functionality, then gradually building to tests of
compound objects and behaviors, a unit test framework can be used to verify very
complex architectures. Having such a test framework to build upon not only is much
easier than developing standalone tests, but also produces more thorough, effective
tests. A comprehensive suite of unit tests enables rapid application development,
since the effects of every change can be immediately and thoroughly verified.

In the traditional jargon of testing, tests are categorized as black box or white box,
depending on the amount of access to the internal workings of whatever is being
tested. Functional and structural tests are related ideas. For example, a test that sim-
ply runs a program and checks its return code is a black box (functional) test, since
nothing is known about how the program is written. Unit tests are usually white box
(structural) tests, since the test framework is able to access the internal structure of
the code being tested. Most object-oriented languages provide access protection, pre-
venting outside classes from accessing protected or private code elements. Because of
this, unit tests often are written to test only the public interfaces of the objects tested.
This encourages the design of objects with discrete, testable interfaces and a mini-
mum of complex hidden behavior. Thus, writing testable objects promotes good
object-oriented development practices.

Another distinction is drawn between programmer and acceptance tests. Developers
write programmer tests as they design and build code. These usually test low-level
code elements, such as methods and interfaces. Acceptance tests may be specified or
written by a nonprogrammer, such as a quality-assurance person or product man-
ager. These generally are functional tests of high-level behavior, such as producing
output or performing a user task. Unit tests may fall into either of these categories.

Test Driven Development

Unit test frameworks are a key element of Test Driven Development (TDD), also
known as “test-first programming.” TDD is one of the most significant and widely
used practices in Extreme Programming (XP) and other Agile Development method-
ologies. Test frameworks achieve their maximum utility when used to enable TDD,
although they still are useful when TDD is not followed. This book concentrates on

2 | Chapter1: UnitTest Frameworks: An Overview

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

unit test frameworks as a family of tools, rather than specifically on TDD, but the
two topics are closely related.

The key rule of TDD can be summarized as “test twice, code once,” by analogy to
the carpenter’s rule of “measure twice, cut once.” “Test twice, code once” refers to
the three-step procedure involved in any code change:

1. Write a test of the new code and see it fail.
2. Write the new code, doing “the simplest thing that could possibly work.”

3. See the test succeed, and refactor the code.
These three basic steps are the TDD cycle.

Step 1 is to write a test, run it, and verify the resulting failure. The failure is impor-
tant because it validates that the test fails as expected. It is often tempting to skip
running the test and seeing the failure. Don’t.

In Step 2, code is written to make the test succeed. A wise guideline is doing “the
simplest thing that could possibly work.” This may be a completely trivial implemen-
tation, such as having the new code return a constant value or copying and pasting
code from one place to another. It doesn’t have to be pretty; it just has to pass the
test. The temptation in this step is to do a little extra work and make some addi-
tional code change not directly related to passing the test. Again, don’t do this.

In Step 3, the test succeeds, verifying both the new code and its test. At this point,
the new code may be refactored. Refactoring is a software engineering concept
defined as “behavior-preserving transformation.” More formally, refactoring is the
process of transforming code to improve its internal design without changing its
external functionality. Within the TDD cycle, refactoring starts with the inelegant
code that was written to pass the unit test and improves it by removing duplication
or other ugliness. Since the unit test is in place, the details of how the code is imple-
mented can be altered with confidence.

New code should only be written when a test fails. Code changes are only expected
to occur when you are refactoring, adding new functionality, or debugging. Continu-
ously repeating the TDD cycle is the most atomic level of the software development
process. Software changes generally fall under two categories: adding new function-
ality or fixing bugs.

When adding new functionality, the first step is always to write a unit test that antici-
pates and uses the new code. After the unit test runs and fails, add the new code and
re-test to verify success. The unit test has value aside from simply demonstrating that
the new functionality works. Writing the test forces you to think in advance about
the ideal design of the new code. Thus, in a sneaky and subtle way, TDD makes all
new development part of a methodical, low-level software design process. Once the
new unit test and functionality are in place, the unit test serves as the definitive,
working example of how the new code is supposed to be used. For these reasons,

Test Driven Development | 3

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

time spent writing unit tests is not solely testing effort. Investments in testing are
equal investments in design.

When debugging, you should first write a unit test that fails because of the bug. This
is a useful effort in itself, because it determines exactly how the bug occurs. Once the
unit test is in place and failing, fix the bug and re-run the test to verify that the bug is
closed. Aside from fixing the bug, this process has the additional benefit of creating a
test that will catch it. If the bug is ever re-introduced, the test will fail and highlight
the problem.

By following the TDD cycle, you can come as close as humanly possible to writing
flawless code on the first try—in other words, “code once.” The process gives you a
clear indication that a piece of work is done. When a new unit test is written and
then fails, the task is halfway completed. You cannot move on to something else
until the test succeeds.

Unit Testing and Quality Assurance

Unit test frameworks are valuable when used for automated software testing as part
of a quality assurance (QA) process. In many software development groups, the QA
process starts when new code is submitted, built, and unit tested. Often, the unit
tests include not only programmer tests, but also acceptance tests designed or writ-
ten by the QA team. If all the unit tests succeed, the code is provisionally accepted
and sent to a QA engineer for inspection and testing.

Running the full suite of unit tests as the first step in QA has many benefits. Most
importantly, the tests ensure that the code is solid the moment it has left the develop-
ers’ hands. No human intervention is required to run the tests and evaluate the
results. Either they all succeed, or there is a failure. Such Boolean (true/false) results
are ideal because an automated system can understand them. The success of the unit
tests confirms that the developers’ assumptions are valid, and that the low-level func-
tionality is working correctly at a level of scrutiny that functional tests can never
achieve. When numerous developers are making changes at once, the unit tests pro-
vide confidence that nobody’s changes caused someone else’s code to break. Further-
more, unit tests help to provide accountability. Knowing exactly which test fails
usually makes it apparent whose change broke things. “Breaking the build” once
meant submitting code that caused a compile to fail, but now often refers to causing
a unit test failure as well. Many teams employ heinous punishments (such as making
the responsible developer buy donuts or beer for coworkers) to remind everyone that
breaking the build is a serious offense. The failure of a unit test clearly places a high
priority on fixing the problem. If TDD is followed rigorously, the code should never
be left in a state in which a unit test fails.

Unit testing doesn’t replace all other types of testing. It is entirely possible to develop
thoroughly unit-tested, completely bulletproof code that is lacking in usability and

4 | Chapter1: UnitTest Frameworks: An Overview

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

performance. Stress testing, performance testing, and usability testing usually are
separate considerations from unit testing. QA effort is still necessary to try out the
completed application, decide whether it performs acceptably in real-world condi-
tions, observe how things work outside of a controlled development environment,
and otherwise apply human judgment. There are elements of software functionality
for which it is difficult or impossible to write good unit tests. These include GUI
“look and feel,” responses to system events, interaction with distributed application
components, and many other possibilities. Sometimes unit tests can be written to
simulate these types of situations, but ultimately, there is no substitute for reality or
for a user’s objective feedback.

Although manual QA testing is still important, unit tests are a powerful tool for QA.
Developers who use test-centric development report dramatic improvements in soft-
ware quality, speed of development, and ability to make significant design changes
on the fly. These speed and quality advantages rapidly become apparent from the
QA perspective as well.

Homegrown Unit Testing

Writing simple tests comes naturally to most programmers. The classic beginner
exercise of writing a three-line program that prints “Hello world!” is a basic unit test
of the development language and environment. Find a software shop with no unit
test framework in place (if such a prehistoric place could possibly exist), and you
may see developers writing their own little “toy programs” or “test utilities” to try
out new code. The sad thing about this approach is that the toy programs are thrown
away once the developer is done with them. Later, when something breaks, some-
one has to laboriously debug the production code, without benefit of the developer’s
test.

Another common low-level testing technique is to build tests into the production
code with ASSERT macros. In debug builds, the macro tests a condition and sends a
message if it fails. In release builds, the macro is defined to be empty, so no test code
is included. This allows a developer to sprinkle assertions throughout the code,
reporting any condition that is worthy of someone’s attention. Asserts can be a use-
ful thing to have in your software toolbox, but far less so than true unit testing. For
an assert to be evaluated, the production code must be run to the point where it is
defined. It’s not convenient for automated testing, since an automated system
doesn’t know how to cause a particular assert to fire. Failures don’t leave the devel-
oper with a clear path to correct the problem. Fixing a failure is no guarantee that the
same problem will not happen again under different circumstances. Reliance on test-
ing with this type of assert is unlikely to produce high-quality software. It is a fore-
runner to formal unit testing, which uses test asserts contained within well-defined
tests, rather than placed randomly in the production code.

Homegrown UnitTesting | 5

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Just as many developers take the initiative and write test programs to try out small
pieces of code, it’s common to find developers putting together basic, home-grown
unit test frameworks that take care of their testing needs. As demonstrated in the
Chapter 2, a test framework can be just a few lines of code to run unit tests and

report the results. Even a very simple framework can be the foundation for thorough
testing of complex applications.

6 | Chapter1: UnitTest Frameworks: An Overview

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896
Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 2
Getting Started: Tutorial

Software concepts are best explained by example. In this tutorial, you will set up a
simple unit test framework and use it to help build a basic application. Following the
primary rule of TDD, every change to the code is preceded by a unit test.

Why build our own test framework, instead of starting with one of the xUnits? The
xUnit test frameworks are powerful tools. They not only support writing unit tests,
running them, and reporting the results, but also include test classes, helper code,
test runners, and utilities. Such features minimize the amount of code required to
write a unit test and maximize your ability to test complex code. They include much
more than the minimum needed to build unit tests.

The core functionality of running tests and reporting the results is fundamentally
simple. Developers working in cross-platform environments, using older compilers
or uncommon languages or needing closer control over how unit tests and their
results are handled may not be able to use the xUnits or want to invest the time to set
them up. The proliferation of very basic unit test frameworks available online dem-
onstrates the popular belief that “simpler is better” when it comes to unit test frame-
works. Most importantly, creating your own framework clearly demonstrates how
unit tests work and how straightforward the unit test framework concept really is.

The example code is given in Java. Appendix A contains the C++ version. The code
can be found on the CD accompanying this book in the directory /examples/
chapter2. Consider entering the code in this chapter by hand as if you were coding it
from scratch. It’s an illuminating exercise that will help you to understand how
quick and easy it is to set up and start using a unit test framework.

This tutorial assumes that you have a Java runtime environment and compiler
installed. Sun’s javac compiler is recommended, as is the GNU gc¢j Java compiler.
Versions of both compilers are readily available for most platforms.

The step-by-step procedures given here assume that you are compiling and running the
code from the command line. If you are using a graphical Integrated Development
Environment (IDE), the details of how you build and run the example code will differ.

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Outline of an Application: the Virtual Library

This book presents an increasingly complex series of code examples to illustrate unit
test framework usage. The examples fit into an overall system concept. Your mis-
sion, should you choose to accept it, is to build a system for managing a library full
of books. Books will have the attributes you might expect, such as title and author.
Users of the system will need to be able to perform a variety of library operations:
adding new books, searching for books, checking them in and out of the library, and
so forth.

Example 1: Create a Book

For the first example, we will create a representation of a book and its title. Since
we’ll do test-first development, we need to set up a unit test framework prior to writ-
ing any code for the book class. This test framework serves both as the foundation
for the example’s unit tests and also as an illustration of just how simple a functional
test framework can be. Building it is Step 0.

The subsequent steps are the usual three steps in the TDD cycle. Step 1 is to write a
unit test to verify that a book has been created. At first, the unit test will fail, because
the functionality to create a book does not yet exist. Step 2 is to build the functional-
ity to create a book. In Step 3, the test succeeds, proving that the functionality works
and providing an example of how to use it.

Step 0: Set Up the Unit Test Framework

The unit test framework initially is built on a single class, UnitTest, shown in
Figure 2-1.

UnitTest

runTest()
assertTrue()

int num_test_success

Figure 2-1. The class UnitTest
The source code for UnitTest is given in Example 2-1.

Example 2-1. The base class UnitTest

UnitTest.java
public abstract class UnitTest {

protected static int num_test_success = 0;

8 | Chapter2: Getting Started: Tutorial

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 2-1. The base class UnitTest (continued)

public abstract void runTest() throws Exception;

protected void assertTrue(boolean condition, String msg)
throws Exception {
if (!condition)
throw new Exception(msg);
num_test success++;

}
}

The class UnitTest is abstract because its purpose is to be the parent class for actual
unit tests. It contains a static integer member, num_test success, which keeps track
of the number of successful tests. Descendant classes override the method runTest()
to run actual tests. The method assertTrue() tests a condition. If the condition is
TRUE, the successful test counter is incremented. If it is FALSE, an Exception is thrown
containing a message string associated with the condition.

Compile UnitTest with the command javac UnitTest. java (or your compiler’s equiv-
alent command). Believe it or not, you now have a simple but functional test frame-
work with which to start building tests.

You could look at this unit test framework and ask, “How is something that can be
written in 10 lines of code worth an entire book?” Unit test frameworks are funda-
mentally simple tools that can be used in sophisticated ways. The xUnit frameworks
represent significantly more complicated and powerful pieces of software than the
basic framework used in this example. In the subsequent chapters, we will get into
the features of more advanced unit test frameworks and how they save coding effort
and enable building more complex tests.

Step 1: Create a Unit Test

Now that you have built your simple unit test framework, it’s time to create a unit
test. The unit test will fail because the functionality it tests has not been built.
Remember the TDD process: if your tests do not fail initially, then you are not writ-
ing good tests. The test failure also demonstrates that the framework works as
expected.

Before writing the first test, take a moment to decide what you want the new code to
do and how to test whether it succeeds. We want to represent a book and its title,
which sensibly is done with a class named Book having a title attribute. So, we will
create a unit test that creates an instance of Book and checks its title.

Example 2-2 shows the implementation of the first unit test, BookTest.

Example 1:CreateaBook | 9

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 2-2. The unit test class BookTest

BookTest. java
public class BookTest extends UnitTest {

public void runTest() throws Exception {
Book book = new Book("Dune");
assertTrue(book.title.equals("Dune"), "checking title");

}
}

BookTest is very simple. It creates a book, giving the title as an argument to the con-
structor. It then tests that the value of the attribute title has been set correctly. The
string checking title describes the test condition.

Compile this new class. The compiler will inform you that it does not know about a
class named Book. So, create the most basic implementation of Book that will allow
everything to compile, as shown in Example 2-3.

Example 2-3. The class Book

Book. java
public class Book {

nn

public String title = "";
Book(String title) {}
}

Someone who cares about software design would have a problem with this code.
Making the title attribute public is not good; it would be better to make it private
and provide an accessor function such as getTitle() to obtain its value. However,
adding the accessor now would create two methods that should be unit tested: the
constructor and the accessor. This change should wait until the current change is
done and tested.

Book and BookTest can now compile. Our first unit test is now built. We still need to
run the test to see whether it succeeds or fails. One additional new piece of code is
necessary. The class TestRunner runs BookTest and reports success or failure.
Example 2-4 gives the implementation of TestRunner.

Example 2-4. The class TestRunner

TestRunner. java
public class TestRunner {

public static void main(String[] args) {
TestRunner tester = new TestRunner();

}

10 | Chapter2: Getting Started: Tutorial

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 2-4. The class TestRunner (continued)

public TestRunner() {

try {
UnitTest test = new BookTest();
test.runTest();
System.out.println("SUCCESS!");

}
catch (Exception e) {

e.printStackTrace();
System.out.printIn("FAILURE!");
}
}
}

TestRunner contains the main() method for the test framework. When an instance of
TestRunner is created, it creates a BookTest and calls its runTest() method. If there is
no error, success is reported. If an exception is thrown, TestRunner reports the loca-
tion of the failure from the exception stack trace.

Compile the new code and run it using java TestRunner. You should get the follow-
ing results:
FATLURE!
java.lang.Exception: checking title
at UnitTest.assertTrue(UnitTest.java:10)
at BookTest.runTest(BookTest.java:5)
at TestRunner.<init>(TestRunner.java:10)
at TestRunner.main(TestRunner.java:4)
A failure is reported. The test description is printed, followed by the stack trace
showing where the failure occurred.

Congratulations! You have produced a test failure. This failure is a success of the
TDD process. The unit test BookTest has done its job, reporting that the functional-
ity being tested is not implemented. The simple framework has performed its role,
running the test and reporting the results, including the location and description of
the failure. We now have a working unit test framework.

A semantic distinction is drawn between failures and errors in unit testing. A failure
is a unit test reporting that a test condition has evaluated to false. If you’re not pro-
ducing failures, you’re not writing good tests. An error is an unexpected problem,
such as an uncaught exception. Errors may happen, but producing them is not a goal
of the TDD process.

Step 2: Create a Book

In the previous step, we wrote the first unit test, BookTest. In order to get BookTest to
compile, we also created a basic implementation of the class Book. When run,
BookTest still fails, because Book does not yet contain the functionality being tested.

Example 1: CreateaBook | 11

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

In this step, we add the necessary code to get the test to succeed. As compared to
Step 1, the changes required at this point are very minor.

The class Book is modified so that the title attribute is set in the constructor, as
shown in Example 2-5.

Example 2-5. The class Book with title attribute set by the constructor

Book. java
public class Book {

nn

public String title = "";

Book(String title) { this.title = title; }

Step 3: Test Again

The final step is to rebuild the code, re-run the unit test, and see whether the changes
produce the desired results.

Compile the code and run it using java TestRunner. You should see the following
result:

SUCCESS!

Mission accomplished! Creating a class representing a book with a title attribute is a
simple task that most developers could accomplish in a few minutes, without feeling
the need for a unit test to validate it. However, we accomplished much more than
that in this exercise. We created a simple unit test framework, built a unit test, and
validated that the framework behaves as expected in both failure and success cases.
The initial unit test, although a trivial validation of the class Book, is important as a
test of the framework itself.

From the formal software design perspective, the class architecture we’ve just built is
shown in Figure 2-2.

Example 2: Create a Library

For the second example, we’ll add additional functionality to the library application.
The new features will allow us to create a library, add a book to it, and get a book
from it. Along the way, we also will add a few features to the unit test framework.

Consider the minimum new code that will provide what is necessary. Creating a
library is easy. We can instantiate an empty class called Library and be done. Add-
ing a book to the library is a feature with a little more to think through. We have a
class Book, and the fact that we can add a Book to a Library suggests how a Library
should work. A Library contains Books. The ability to get a book from the library
reinforces this idea.

12 | Chapter2: Getting Started: Tutorial

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

UnitTest

A

inherits from
Test BookTest
Runner runs
tests
Book

Figure 2-2. Class diagram for the basic unit test framework

Let’s create a unit test that adds a Book to a Library and then gets the Book back out
again, verifying that the Library contains the Book.

Step 1: Test adding a Book to a Library

The class LibraryTest is the initial unit test for the Library class. Its implementation
is shown in Example 2-6.

Example 2-6. Initial version of LibraryTest

LibraryTest.java
public class LibraryTest extends UnitTest {

public void runTest() throws Exception {
Library library = new Library();
Book expectedBook = new Book("Dune");
library.addBook(expectedBook);
Book actualBook = library.getBook("Dune");
assertTrue(actualBook.title.equals("Dune"), "got book");

}

The test creates a Library and a Book, adds the Book to the Library, then gets the Book
from the Library and asserts that the expected Book was found.

Additional code must be added to TestRunner to run LibraryTest, as shown in
Example 2-7.

Example 2: CreateaLibrary | 13

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 2-7. TestRunner modified to run LibraryTest

TestRunner. java
public class TestRunner {

public static void main(String[] args) {
TestRunner tester = new TestRunner();

}
public TestRunner() {
try {
BookTest test = new BookTest();
test.runTest();
LibraryTest test2 = new LibraryTest();
test2.runTest();
System.out.println("SUCCESS!");
}
catch (Exception e) {
System.out.println("FAILURE!");
e.printStackTrace();
}
System.out.println(UnitTest.getNumSuccess()
+ " tests completed successfully");
}

}

Now that more than one unit test is being run, it’s useful to report the value of the
test success counter. To obtain this value, the accessor function getNumSuccess() is
added to the class UnitTest, as shown in Example 2-8.

Example 2-8. UnitTest with accessor function getNumSuccess

UnitTest.java
public abstract class UnitTest {

protected static int num_test success = 0;
public abstract void runTest() throws Exception;

public static int getNumSuccess()
{ return num_test_success; }

protected void assertTrue(boolean condition, String msg)
throws Exception {
if (!condition)
throw new Exception(msg);
num_test_success++;

}

14 | Chapter2: Getting Started: Tutorial

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

So far, the code will not compile because there’s no class named Library. Let’s cre-
ate the most basic implementation that will allow LibraryTest to compile, as shown
in Example 2-9.

Example 2-9. Initial version of the class Library

Library.java
public class Library {

Library() {}

public void addBook(Book book) {}

public Book getBook(String title) {
return new Book("");
}

}

The code should now compile and run. The framework should report the failure of
LibraryTest, as well as the success of BookTest:
FAILURE!
java.lang.Exception: got book
at UnitTest.assertTrue(UnitTest.java:13)
at LibraryTest.runTest(LibraryTest.java:11)
at TestRunner.<init>(TestRunner.java:12)
at TestRunner.main(TestRunner.java:4)
1 tests completed successfully

Step 2: Add a Book to a Library

Now it’s time to add the functionality to make LibraryTest succeed. We should only
have to change the Library class. If any other changes were necessary, it would sug-
gest that the unit test relies on some behavior other than what Library provides.

You might already have a design in mind for Library that uses some kind of collec-
tion to store a set of Books. You could start building it at this point. But consider this:
Library can be made to pass LibraryTest without using a collection. Since we should
not be building any functionality without first writing a unit test for it, implement-
ing a collection of Books is going too far. Stick to the principle of doing “the simplest
thing that could possibly work.”

Example 2-10 shows the Library class with new functionality to pass LibraryTest.

Example 2-10. Library with changes to pass LibraryTest

Library.java
public class Library {

private Book book;

Example 2: Create aLibrary | 15

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 2-10. Library with changes to pass LibraryTest (continued)
Library() {}

public void addBook(Book book) {
this.book = book;
}

public Book getBook(String title) {
return book;

}
}

The Library class now contains a data member: a single Book. This may seem like
cheating. After all, we certainly want a library to be able to hold more than one item.
But LibraryTest tests only adding and retrieving a single Book, so the code given here
is the minimum necessary to pass the test. Before implementing a Library that can
contain multiple Books, add a new unit test to LibraryTest to test that behavior.

Step 3: Check Unit Test Results
Compiling and running this code should demonstrate success for both of the unit
tests:

SUCCESS!
2 tests completed successfully

The architecture of our unit test framework, unit tests, and production classes is
shown in Figure 2-3.

TestRunner UnitTest
A
runs >< inherits from
BookTest LibraryTest
tests tests
Book Library

Figure 2-3. Class diagram for the unit test framework and unit tests

16 | Chapter2: Getting Started: Tutorial

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The current implementation of Library is trivial. While writing the code to pass
LibraryTest, we realized that it could be satisfied with a Library that contains a sin-
gle book. So, the obvious unit test to write next is one that tests adding and retriev-
ing multiple Books from the Library. Often, adding one unit test and the
corresponding functionality makes it clear what the next step should be. Since you
are building a series of unit tests as you go and constantly validating the new code,
you can be confident that everything you’ve built is working, and rapidly make
changes. Sometimes you will find that a trivial implementation put in place just to
get a unit test to pass stays in place for many iterations of the software. That’s fine!
This is the process working to save you from building unnecessary code.

You might already have decided there are flaws in Library and Book. For example,
Library’s getBook() method returns an uninitialized Book if it is called before
addBook (). The class Book has a public attribute, title, which should be made
private and accessed with a get method. How should you take care of such prob-
lems? Write tests that fail because of these problems, then write code that fixes them.
Every time you come up with a potential change to the design, there is a clear pro-
cess for trying it out. Test first, then code, then test again.

Example 2: Create aLibrary | 17

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 3

The xUnit Family of Unit Test
Frameworks

Kent Beck published a unit test framework for the Smalltalk language in 1999. The
architecture of SmalltalkUnit (or SUnit) represents a sweet spot, an ideal balance
between simplicity and utility. Later, Erich Gamma ported SUnit to Java, creating
JUnit. JUnit in turn begat CppUnit, NUnit, PyUnit, XMLUnit, and ports to many
other languages. A dizzying array of unit test frameworks built on the same model
now exists. These frameworks are known as the xUnit family of tools. All are free,
open source software.

xUnit Family Members

Some of the most popular xUnit test frameworks are listed next, with brief summa-
ries of their target language and testing domain. This is just a sample of the many
xUnit-derived test tools.

JUnit
The reference implementation of xUnit, JUnit is by far the most widely used and
extended unit test framework. It is implemented in and used with Java and is
covered in Chapter 6 of this book.

CppUnit
The C++ port of JUnit, it closely follows the JUnit model. This is covered in
Chapter 7 of this book.

NUnit
The xUnit for .NET. Rather than being a direct port of JUnit, it has a .NET-spe-
cific implementation that generally follows the xUnit model. It is written in C#
and can be used to test any .NET language, including C#, VB.Net, J#, and Man-
aged C++. It is covered in Chapter 8 of this book.

PyUnit
The Python version of xUnit. It is included as a standard component of Python
2.1, and is covered in Chapter 9 of this book.

18

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

SUnit
Also known as SmalltalkUnit, this is the original xUnit, and the basis of the
xUnit architecture. It is written in and used with the Smalltalk language.

vbUnit
vbUnit is xUnit for Visual Basic (VB). It is written in VB and supports building
unit tests in VB and COM development.

utPLSQL
utPLSQL is xUnit for Oracle’s PL/SQL language. It is written in and used with
PL/SQL.

MinUnit
A great example of a minimal but functional unit test framework. It is imple-
mented in three lines of C and is used to test C code.

xUnit Extensions

Beyond the xUnits themselves, many add-on tools are available that extend the func-
tionality of existing unit test frameworks into specialized domains, rather than act-
ing as standalone tools. A representative set of popular extensions is listed here.

XMLUnit
An xUnit extension to support XML testing. Versions exist as extensions to both
JUnit and NUnit. This is covered in Chapter 10 of this book.

JUnitPerf
A JUnit extension that supports writing code performance and scalability tests.
It is written in and used with Java.

Cactus
A JUnit extension for unit testing server-side code such as servlets, JSPs, or E]Bs.
It is written in and used with Java.
JECUnit
A JUnit extension that supports writing GUI tests for Java Swing applications. It
is written in and used with Java.
NUnitForms
An NUnit extension that supports GUI tests of Windows Forms applications. It
is written in C# and can be used with any .NET language.
HTMLUnit
An extension to JUnit that tests web-based applications. It simulates a web
browser, and is oriented towards writing tests that deal with HTML pages.
HTTPUnit
Another JUnit extension that tests web-based applications. It is oriented towards
writing tests that deal with HTTP request and response objects.

xUnit Extensions | 19

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Jester
A helpful extension to JUnit that automatically finds and reports code that is not
covered by unit tests. Versions exist for Python (Pester) and NUnit (Nester).
Many other code coverage tools with similar functionality exist.

The xUnit Architecture

The xUnits all have the same basic architecture. This section describes the xUnit fun-
damentals, using JUnit as the reference example, since it is the most widely used of
the xUnits. The other xUnits vary in their implementation details, but follow the
same pattern and generally contain the same key classes and concepts. The key
classes are TestCase, TestRunner, TestFixture, TestSuite, and TestResult.

The architecture diagrams in this section leave out some methods and other design
details for clarity and represent the generic xUnit design, not that of JUnit.

TestCase
xUnit’s most elemental class is TestCase, the base class for a unit test. It is shown in
Figure 3-1.
TestCase
runTest()

Figure 3-1. The abstract class TestCase, the parent of all xUnit unit tests

All unit tests are inherited from TestCase. To create a unit test, define a test class that
is descended from TestCase and add a test method to it. Example 3-1 shows the unit
test BookTest.

Example 3-1. BookTest, a test built on TestCase

BookTest.java
import junit.framework.*;

public class BookTest extends TestCase {

public void testConstructBook() {
Book book = new Book("Dune");
assertTrue(book.getTitle().equals("Dune"));

}

20 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The test method testConstructBook() uses assertTrue() to check the value of the
Book’s title. Test conditions always are evaluated by the framework’s assert methods.
If a condition evaluates to TRUE, the framework increments the successful test
counter. If it is FALSE, a test failure has occurred and the framework records the
details, including the failure’s location in the code. After a failure, the framework
skips the rest of the code in the test method, since the test result is already known.

BookTest tests the class Book, shown in Example 3-2.

Example 3-2. The class Book

Book. java
public class Book {

private String title = "";
Book(String title) { this.title = title; }

String getTitle() { return title; }
}

This is the Book class developed in Chapter 2, with a few changes. The title attribute
is now private and the accessor function getTitle() is added.

BookTest can be run by adding a main() method that calls the test method, as shown
in Example 3-3.

Example 3-3. BookTest with changes allowing it to be run

BookTest.java
import junit.framework.*;

public class BookTest extends TestCase {

public void testConstructBook() {

Book book = new Book("Dune");

assertTrue(book.getTitle().equals("Dune"));
}

public static void main(String args[]) {
BookTest test = new BookTest();
test.testConstructBook();

}

}

Compiling and running BookTest produces a disappointing lack of output and not
much confidence that anything actually happened.
> javac BookTest.java

> java BookTest
>

The xUnit Architecture | 21

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

For the commands to work as shown, junit.jar and the directory containing the test
classes must be in the Java classpath.

The results are more interesting if BookTest is made to fail by changing the
assertTrue() condition to FALSE.

> java BookTest
Exception in thread "main" junit.framework.AssertionFailedError
at junit.framework.Assert.fail(Assert.java:47)
at junit.framework.Assert.assertTrue(Assert.java:20)
at junit.framework.Assert.assertTrue(Assert.java:27)
at BookTest.testConstructBook(BookTest.java:7)
at BookTest.main(BookTest.java:12)

You can see that the unit test framework is doing its job, running the test and report-
ing the test failure. This demonstrates that an xUnit framework can be used in a very
simple and straightforward way. Basic unit tests can be built on TestCase without
any additional knowledge of the framework. However, the xUnits have other, more
useful functionality to offer. One of the most valuable pieces is TestRunner.

TestRunner

A TestRunner reports details about the test results and simplifies the test. It is a fairly
complex object that, in JUnit, comes in three flavors: the AWT TestRunner, the
Swing TestRunner, and the textual TestRunner (cleverly named TextTestRunner.) Their
purpose is to run one or more TestCases and report the results. Figure 3-2 shows
TextTestRunner.

TextTestRunner

run(Test test)
main()

Figure 3-2. The class TextTestRunner

The important methods of TextTestRunner are run(), which gives it a test to run, and
main(), which makes TextTestRunner a runnable class. TextTestRunner will be run
with the test class BookTest as its argument. It will find the test method
testConstructBook and run it.

You can remove the main() method in BookTest, since you no longer need it to run
the test. Example 3-4 shows the refactored BookTest.

Example 3-4. BookTest made simple again

BookTest.java
import junit.framework.*;

22 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 3-4. BookTest made simple again (continued)
public class BookTest extends TestCase {
public void testConstructBook() {
Book book = new Book("Dune");

assertTrue(book.getTitle().equals("Dune"));
}

}

BookTest is reduced back to its essentials. Now, use TextTestRunner to run BookTest:

> java junit.textui.TestRunner BookTest

%ime: 0.01

0K (1 test)
Using the TestRunner not only takes unnecessary code out of BookTest, but also pro-
vides a nice report of how many tests were run and how long they took.

Test classes often have multiple test methods. TestRunner will find all of the test
methods that have names starting with test and run them. Example 3-5 shows
BookTest with a second test method added. The new test validates a Book’s author.

Example 3-5. BookTest with a second test method

BookTest.java
import junit.framework.*;

public class BookTest extends TestCase {

public void testConstructBook() {
Book book = new Book("Dune", "");
assertTrue(book.getTitle().equals("Dune"));

}

public void testAuthor() {
Book book = new Book("Dune", "Frank Herbert");
assertTrue(book.getAuthor().equals("Frank Herbert"));

}
}

The author attribute and its accessor function getAuthor() are added to Book, as
shown in Example 3-6.

Example 3-6. Book with an author attribute

Book. java
public class Book {

nn

private String title = "";

The xUnit Architecture | 23

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 3-6. Book with an author attribute (continued)

private String author = "";

Book(String title, String author) {
this.title = title;
this.author = author;

}

public String getTitle() { return title; }
public String getAuthor() { return author; }

}

Running BookTest shows that the framework now is running two tests:

> java junit.textui.TestRunner BookTest
Time: 0.01
OK (2 tests)

A dot is printed when each test is run as a progress indicator. The test output con-
cludes with the number of tests and the elapsed time.

Most of the xUnits include a GUI TestRunner to provide enhanced visual feedback on
the test results. The results are highlighted in green if all the tests succeed, or in red if
there is a test failure. (This is the origin of the terms green bar and red bar. The TDD
cycle is sometimes described as “Red-Green-Refactor” because of this. First, imple-
ment a new test that fails, causing a red bar; then, make the simplest possible code
change that restores the green bar; finally, refactor the possibly ugly code that was
introduced.) The chapters later in this book that describe specific versions of xUnit
show screenshots of their TestRunner GUIs.

TestFixture

To explain test fixtures, another important xUnit concept, a more complex unit test
example is useful. Functionality will be added to the Library class from Chapter 2 to
allow multiple Books to be added and to get the number of Books the Library class
contains. Example 3-7 gives an initial version of the unit test LibraryTest that tests
these new features.

Example 3-7. Initial version of LibraryTest

LibraryTest.java
import junit.framework.*;
import java.util.*;

public class LibraryTest extends TestCase {

public void testAddBooks() {
Library library = new Library();

24 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 3-7. Initial version of LibraryTest (continued)

library.addBook(new Book("Dune", "Frank Herbert"));
library.addBook(new Book("Solaris", "Stanislaw Lem"));
Book book = library.getBook("Dune");

assertTrue(book.getTitle().equals("Dune"));

book = library.getBook("Solaris");

assertTrue(book.getTitle().equals("Solaris"));

}

public void testLibrarySize() {
Library library = new Library();
library.addBook(new Book("Dune", "Frank Herbert"));
library.addBook(new Book("Solaris", "Stanislaw Lem"));
assertTrue(library.getNumBooks() == 2);

}

Two test methods are implemented. The method testAddBooks() adds two Books to
the Library, then uses getBook() to verify that the additions succeeded. The method
testlLibrarySize() also adds two Books, then checks that getNumBooks (') returns “2”.

Example 3-8 shows the new version of Library with the additional functionality to
pass the tests.

Example 3-8. New version of Library

Library.java
import java.util.*;

public class Library {
private Vector books;

Library() {
books = new Vector();

}

public void addBook(Book book) {
books.add(book);

}

public Book getBook(String title) {
for (int i=0; i < books.size(); i++) {
Book book = (Book) books.elementAt(i);
if (book.getTitle().equals(title))
return book;
}

return null;

}

public int getNumBooks() {
return books.size();

The xUnit Architecture | 25

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 3-8. New version of Library (continued)

}
}

Library now uses a Vector to contain a collection of Books. The new method
getNumBooks (') returns the number of Books in the collection. The methods addBook()
and getBook() add and retrieve a Book from the collection.

When you use TextTestRunner to execute LibraryTest, both test methods succeed:

> java junit.textui.TestRunner LibraryTest
Time: 0.05

OK (2 tests)

LibraryTest has a number of problems. First and foremost, the amount of code
duplication between the two test methods is bothersome. Both of them create a test
Library and add two books to it. Second, another concern is what will happen if one
of the asserts fails. The rest of the code in the test method will not be executed and
any objects created will not be cleaned up. In Java, the garbage collector will deallo-
cate objects automatically, but often unit tests use objects or resources that must be
explicitly closed or deleted.

One way to take care of the code duplication is to make the test Library a member of
LibraryTest and have the first test initialize it and add the initial two elements. The
second test could assume that the first test succeeded, run its tests, and then clean
up. Unfortunately, this solution introduces more potential problems. If the first test
fails, the second also may fail because its initial conditions are wrong, even though
there may be nothing wrong with the functionality it tests. The second test will
always fail unless the first one is run before it, so they cannot be run separately or in
reverse order. Furthermore, failure of either test is likely to result in things not get-
ting cleaned up.

In general, well-written unit tests exhibit isolation. An isolated test doesn’t depend in
any way on the results of other tests. To ensure isolation, tests should not share
objects that change. Tests that have interdependencies are coupled. In LibraryTest, if
one of the test methods assumed that the other test left the Library in a certain state,
it would be a classic example of test coupling.

The xUnit architecture helps to ensure test isolation with test fixtures. A test fixture
is a test environment used by multiple tests. It is implemented as a TestCase with
multiple test methods that share objects. The shared objects represent the common
test environment. Figure 3-3 shows the relationship between a TestFixture and a
TestCase.

Every TestCase is implicitly a TestFixture, although it may not act as one. The
TestFixture behavior comes into play when multiple test methods have objects in

26 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFixture

setUp()
tearDown()

A
inherits from

TestFixture

setUp()
tearDown()
runTest()

Figure 3-3. TestFixture and its child TestCase

common. The setUp() method is called prior to each test method, establishing the
initial environment for the test. The tearDown() method is always called after each
test method to clean up the test environment, even if there is a failure. Thus,
although the tests use the same objects, they can make changes without the possibil-
ity of affecting the next test.

The TestFixture behavior effectively creates and destroys the test class each time one
of its test methods is called. This may incur a performance penalty, but it is impor-
tant to guarantee that the tests are isolated.

Incidentally, some xUnits (such as CppUnit) have an actual class or interface named
TestFixture from which TestCase is descended, while some (JUnit) just allow
TestCase to act as a TestFixture.

Writing tests as TestFixtures has a number of advantages. Test methods can share
objects but still run in isolation. Test coupling is minimized. Test methods that share
code can be grouped together in the same TestFixture. Code duplication between
tests is reduced. The cleanup code is guaranteed to run whether a test succeeds or
fails. Finally, the test methods can be run in any order, since they are isolated.
Example 3-9 shows LibraryTest implemented as a TestFixture. In this example, the
test fixture’s shared environment contains an instance of Library with two Books.

Example 3-9. LibraryTest implemented as a TestFixture
LibraryTest.java

import junit.framework.*;

import java.util.*;

public class LibraryTest extends TestCase {

private Library library;

public void setUp() {

The xUnit Architecture | 27

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 3-9. LibraryTest implemented as a TestFixture (continued)

library = new Library();
library.addBook(new Book("Dune", "Frank Herbert"));
library.addBook(new Book("Solaris", "Stanislaw Lem"));

}

public void tearDown() {

}

public void testGetBooks() {
Book book = library.getBook("Dune");
assertTrue(book.getTitle().equals("Dune"));
book = library.getBook("Solaris");
assertTrue(book.getTitle().equals("Solaris"));

}

public void testLibrarySize() {
assertTrue(library.getNumBooks() == 2);
}

}

The stylistic improvements over the previous version of LibraryTest are apparent:
the code duplication is gone, the test methods contain only statements specifically
related to the test conditions, and the tests are easier to understand.

Note that the test method previously named testAddBooks() is renamed
testGetBooks() to more accurately describe what it’s doing.

When LibraryTest is run, the sequence of function calls is:

setUp()
testGetBooks ()
tearDown()
setUp()
testLibrarySize()
tearDown()
The calls to setUp() and tearDown() initialize and deinitialize the test fixture each

time a test method is called, thus isolating the tests.

TestSuite

So far, this review of xUnit has focused on writing single unit test classes, sometimes
with multiple test methods. What about testing with multiple unit test classes? After
all, each production object should have a corresponding unit test.

xUnit contains a class for aggregating unit tests called TestSuite. TestSuite is closely
related to TestCase, since both are descendants of the same abstract class, Test.
Figure 3-4 shows the Test interface and how TestSuite and TestCase implement it.

28 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Test

run(TestResult result)

inherits from inherits from
TestSuite TestCase
run(TestResult result) run(TestResult result)
addTest(Test test) setUp()
tearDown()
runTest()

Figure 3-4. TestSuite, TestCase, and their parent interface Test

The interface Test contains the run() method that the framework uses to run tests
and collect their results. Since TestSuite implements run(), it can be run just like a
TestCase. When a TestCase is run, its test methods are run. When a TestSuite is run,
its TestCases are run. TestCases are added to a TestSuite using the addTest()
method. Since a TestSuite is itself a Test, a TestSuite can contain other TestSuites,
allowing the intrepid developer to build hierarchies of TestSuites and TestCases.

Example 3-10 shows a TestSuite-derived class named LibraryTests that contains
both BookTest and LibraryTest.

Example 3-10. An instance of TestSuite named LibraryTests

LibraryTests.java
import junit.framework.*;

public class LibraryTests extends TestSuite {

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new TestSuite(BookTest.class));
suite.addTest(new TestSuite(LibraryTest.class));
return suite;

}

A TestSuite is created for each of the test classes and added to LibraryTests. This is
a quick way to add all of the test methods to the test suite at once. The addTest()
method also may be used to add test methods to a test suite individually, as shown
here:

suite.addTest(new LibraryTest("testAddBooks"));

The xUnit Architecture | 29

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

To be used this way, an instance of TestCase must have a constructor that takes a
string argument and invokes its parent’s constructor. The string argument specifies
the name of the test method to run.

You can run instances of TestSuite using a TestRunner just as you would run a
TestCase. The TestSuite’s static method suite() is called to create the suite of tests
to run.

> java junit.textui.TestRunner LibraryTests

Time: 0.06
OK (4 tests)

The results show that both of the test methods from the LibraryTest and BookTest
unit test classes have been run, for a total of four tests.

TestResult

As shown in the discussion of the Test interface, TestResult is the parameter to
Test’s run() method. The immediate goal of running unit tests, in a literal sense, is
to accumulate test results. The class TestResult serves this purpose. Each time a test
is run, the TestResult object is passed in to collect the results. Figure 3-5 shows
TestResult.

TestResult

addError(Test, ...)
addFailure(Test, ...)
int errorCount()
int failureCount()
int runCount()

Figure 3-5. The class TestResult, used to collect test outcomes

TestResult is a simple object. It counts the tests run and collects test failures and
errors so the framework can report them. The failures and errors include details
about the location in the code where they occurred and any associated test descrip-
tions. The information printed for the BookTest failure at the beginning of this chap-
ter is typical.

XUnit Architecture Summary

The classes TestCase, TestRunner, TestFixture, TestSuite, and TestResult represent
the core of the xUnit architecture. To understand what they do is to understand how
xUnit works. Figure 3-6 shows how they all fit together.

30 | Chapter3: ThexUnit Family of Unit Test Frameworks

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestRunner

runs
TestResult collects Test TestFixture
results
inherits inherits
from from
TestSuite TestCase

Figure 3-6. Core classes of the xUnit test framework architecture

The test classes created in this chapter and the classes they interact with are shown in

Figure 3-7.
Text
TestRunner
LibraryTest Library

runs ' tests

LibraryTests

contains
BookTest Book
tests
b

Figure 3-7. The test classes LibraryTests, LibraryTest, and BookTest

LibraryTests is a TestSuite containing BookTest and LibraryTest. LibraryTest is a
TestFixture, and BookTest is a TestCase. Conceptually, TextTestRunner runs
LibraryTests, which runs BookTest and LibraryTest, which in turn run their test
methods.

This concludes the discussion of the generic xUnit architecture. Chapters 6 through
10 describe the specific architectural details of some popular versions of xUnit, with
usage examples for each one.

xUnit Architecture Summary | 31

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 4
Writing Unit Tests

The previous chapters present a simple unit test framework and the fundamentals of
xUnit. The unit test framework’s architecture is important to understand, but not
something you have to think about often. Most of your time should be spent writing
unit tests, implementing production code to make the tests pass, or refactoring. This
chapter includes examples of common patterns used when writing unit tests, as well
as related tips on unit test development.

The code examples in this chapter are unit tests of additional virtual library function-
ality, including looking up books by author and title, looking up multiple books by
one author, and removing books from the library. The Library and Book code to
implement the new features is given at the end of the chapter.

Types of Asserts

The code examples shown so far use plain asserts. These are the most generic type of
test assertion, which take a Boolean condition that must evaluate to TRUE for the test
to succeed. A plain assert, the unit test for the Library method removeBook(), is
shown in Example 4-1.

Example 4-1. Test method testRemoveBook() using a plain assert

LibraryTest.java
public void testRemoveBook() {
library.removeBook("Dune");
Book book = library.getBook("Dune");
assertTrue(book == null);

}

If the method removeBook() is stubbed out, the test fails. The following test results
report the failure:
> java junit.textui.TestRunner LibraryTests

..... F.
Time: 0.06

32

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

There was 1 failure:
1) testRemoveBook(LibraryTest)junit.framework.AssertionFailedError
at LibraryTest.testRemoveBook(LibraryTest.java:32)
at sun.reflect.NativeMethodAccessorImpl.invokeo(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

FAILURES!!!
Tests run: 6, Failures: 1, Errors: O

Although the line of code where the failure occurred is shown, the output does not
describe the specific cause of the failure. It often is helpful to add an informative
message to the assertion. The xUnits generally have two versions of every assert
method, one of which takes a message parameter describing the assert. Example 4-2
shows the test method using an assert with a message.

Example 4-2. Test method using an assert with a message

LibraryTest.java
public void testRemoveBook() {
library.removeBook("Dune");
Book book = library.getBook("Dune");
assertTrue("book is not removed", book == null);

}

With the additional message, the rest results provide better information about the
cause of the test failure:

1) testRemoveBook(LibraryTest)junit.framework.AssertionFailedError: book is not
removed

Although all assert conditions ultimately must evaluate to a Boolean result of TRUE or
FALSE, it can be tedious to constantly reduce every expression to this form. The
xUnits offer a variety of assert functions to help. Examples of several of the assert
methods from JUnit are as follows:

assertFalse(book == null);

assertFalse("book is null", book == null);

assertNull(book);

assertNull("book is not null", book);

assertNotNull(book);

assertNotNull("book is null", book);

assertbquals("Solaris", book.title);

assertEquals("unexpected book title", "Solaris", book.title);

These assert methods all have variants that take a message parameter to describe the
failure, as shown above. The assertEquals() method has variants that take different
data types as arguments.

Typesof Asserts | 33

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Defining Custom Asserts

The basic assert methods cover only a few common cases. It’s often useful to extend
them to cover additional test conditions and data types. Custom assert methods save
test coding effort and make the test code more readable.

So far, the Library tests check a Book’s title attribute to verify the expected Book
object, as shown in Example 4-3 in the test method testGetBooks ().

Example 4-3. Test comparing two Books using their title attributes

LibraryTest.java

public void testGetBooks() {
Book book = library.getBook("Dune");
assertTrue(book.getTitle().equals("Dune"));
book = library.getBook("Solaris");
assertTrue(book.getTitle().equals("Solaris"));

}

To be really sure that the test Book is correct, the tests should also check the Book’s
author, but this means adding extra asserts to each test. It’s clearly useful to have an
assert method that compares an expected Book to the actual Book, checking all of the
attributes. This new assert method is easy to implement by building on the generic
assertTrue() method, as shown in Example 4-4.

Example 4-4. Custom assert method to compare Books

BookTest.java
public class BookTest extends TestCase {

public static void assertEquals(Book expected, Book actual) {
assertTrue(expected.getTitle().equals(actual.getTitle())
88 expected.getAuthor().equals(actual.getAuthor()));

}
}

The assert method assertEquals() takes expected and actual Book objects to com-
pare. It succeeds if the title and author attributes of the two Books are equal.
Example 4-5 shows how it is used.

Example 4-5. Using the custom assert method

LibraryTest.java
public class LibraryTest extends TestCase {

private Library library;
private Book book1, book2;

public void setUp() {
library = new Library();
book1 = new Book("Dune", "Frank Herbert");

34 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-5. Using the custom assert method (continued)

book2 = new Book("Solaris", "Stanislaw Lem");
library.addBook(book1);
library.addBook(book2);

}

public void testGetBooks() {
Book book = library.getBook("Dune");
BookTest.assertEquals(book1, book);
book = library.getBook("Solaris");
BookTest.assertEquals(book2, book);

}
}

The custom assert method makes the test clear and concise and improves it by com-
paring all the Book attributes, not just the title. While writing tests, watch for com-
plex assert conditions that are used repeatedly. They are good candidates for
replacement with custom assert methods.

Single Condition Tests

A useful rule of thumb is that a test method should only contain a single test asser-
tion. The idea is that a test method should only test one behavior; if there is more
than one assert condition, multiple things are being tested. When there is more than
one condition to test, then a test fixture should be set up, and each condition placed
in a separate test method.

The xUnits tend to enforce this rule when handling test assertion failures. A test
method returns as soon as a failure occurs, skipping any additional code. Running
the rest of the test is unnecessary, since the result (failure) is known.

Practically speaking, test methods containing several assertions are not always a terri-
ble thing. Tests may have conditions that can only be combined into one expression
with unnecessary complication of the code. The testGetBooks() method in the previ-
ous section verifies that the Library contains two Books, which is most clearly
expressed as two separate asserts, although they could be combined into one com-
pound condition. A single behavior can have several side effects that you should
check with separate assertions. So, it’s not a problem when a test method contains
several asserts, as long as the test method is only testing a single behavior.

However, a test method with many asserts is a clear indicator that a single test is
doing too much. Example 4-6 shows a test method with this problem.

Example 4-6. Poorly written unit test that tests multiple behaviors

LibraryTest.java
public void testLookupBooksByAuthor() {
// Add two books by same author
Book book3 = new Book("Cosmos", "Carl Sagan");

Single Condition Tests | 35

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-6. Poorly written unit test that tests multiple behaviors (continued)

Book book4 = new Book("Contact", "Carl Sagan");
library.addBook(book3);
library.addBook(book4);
// Look up books by title and author
Book book = library.getBook("Cosmos", "Carl Sagan");
BookTest.assertEquals(book3, book);
book = library.getBook("Contact", "Carl Sagan");
BookTest.assertEquals(book4, book);
// Look up both books by author
Vector books = library.getBooks("Carl Sagan");
assertEquals("two books not found", 2, books.size());
book = (Book)books.elementAt(0);
BookTest.assertEquals(book3, book);
book = (Book)books.elementAt(1);
BookTest.assertEquals(book4, book);

}

How is this test flawed? Let us count the ways. It tests two separate behaviors: get-
ting a Book by author and title and getting multiple Books by the same author. Look-
ing up two books by two different methods means there are several results to test;
thus, there are many asserts—five in all. Although it is sensible to check the results of
all the operations, there are redundant tests, such as the two tests of the getBook()
method. To get the test to pass, numerous changes must be made immediately to
both Book and Library. The complexity of the changes increases the chance that a
coding mistake will be made. When one assert in the sequence fails, the rest will be
skipped, leaving it uncertain whether those asserts would succeed. So, if the Book
lookup by title and author fails, it has to be fixed before the test that gets multiple
Books is run. In other words, the tests are coupled so that failure of one may affect the
success of the others.

When the number of asserts in a test method is excessive, change it into a test fix-
ture with multiple test methods, each testing one behavior. In Example 4-7, refactor-
ing the test method makes it apparent that the two lookup methods are distinct
behaviors and should be tested separately.

Example 4-7. The previous test method refactored into separate test methods

LibraryTest.java
public void setUp() {
book3 = new Book("Cosmos", "Carl Sagan");
book4 = new Book("Contact", "Carl Sagan");
library.addBook(book3);
library.addBook(book4);
}

public void testGetBookByTitleAndAuthor() {
Book book = library.getBook("Cosmos", "Carl Sagan");
BookTest.assertEquals(book3, book);

}

36 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-7. The previous test method refactored into separate test methods (continued)

public void testGetBooksByAuthor() {
Vector books = library.getBooks("Carl Sagan");
assertEquals("two books not found", 2, books.size());
Book book = (Book)books.elementAt(0);
BookTest.assertEquals(book3, book);
book = (Book)books.elementAt(1);
BookTest.assertEquals(book4, book);

}

Example 4-7 shows LibraryTest with the two separate test methods, one for each
behavior. The code to add the two test Books is placed in the setUp() method. The
tests are isolated and the code is simplified.

Testing Expected Errors

[t is important to test the error-handling behavior of production code in addition to
its normal behavior. Such tests generate an error and assert that the error is handled
as expected. In other words, an expected error produces a unit test success.

The canonical example of a unit test that checks expected error handling is one that
tests whether an expected exception is thrown, as shown in Example 4-8.

Example 4-8. Unit test for expected exception

LibraryTest.java
public void testRemoveNonexistentBook() {

try {
library.removeBook("Nonexistent");
fail("Expected exception not thrown");
} catch (Exception e) {}

}

The expected error behavior is that an exception is thrown when the removeBook()
method is called for a nonexistent Book. If the exception is thrown, the unit test suc-
ceeds. If it is not thrown, fail() is called. The fail() method is another useful vari-
ation on the basic assert method. It is equivalent to assertTrue(false), but it reads
better.

Since the removeBook() method now throws an exception, the testRemoveBook() unit
test should be updated, as shown in Example 4-9.

Example 4-9. Unit test that fails when an exception is thrown

LibraryTest.java
public void testRemoveBook() {
try {
library.removeBook("Dune");
} catch (Exception e) {
fail(e.getMessage());

Testing Expected Errors | 37

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-9. Unit test that fails when an exception is thrown (continued)

}

Book book = library.getBook("Dune");
assertNull("book is not removed", book);

}

This example uses fail() to cause the test to fail when an unexpected exception is
thrown. The exception’s message attribute is used as the assert message.

The same general pattern is followed to test expected error behavior that is not repre-
sented by an exception: the test fails if the error is not seen and succeeds if it is.
Example 4-10 shows a unit test that attempts to get a nonexistent Book from the
Library and asserts that the expected null Book is returned.

Example 4-10. Unit test checking the expected error getting a nonexistent Book

LibraryTest.java
public void testGetNonexistentBook() {
Book book = library.getBook("Nonexistent");
assertNull(book);
}

(Not) Testing Get/Set Methods

Every behavior should be covered by a unit test, but every method doesn’t need its
own unit test. Many developers don’t test get and set methods, because a method
that does nothing but get or set an attribute value is so simple that it is considered
immune to failure. Tests of such methods are correspondingly trivial, as shown in
the test of getTitle() in Example 4-11.

Example 4-11. Trivial test of getTitle() method

BookTest.java
public void testGetTitle() {
Book book = new Book("Solaris", "Stanislaw Lem");
assertEquals("Solaris", book.getTitle());
}

If a get or set method produces any side effects or otherwise has nontrivial function-
ality, it should be tested. For example, with lazy initialization, a get method may
compute an attribute value before returning it—behavior that deserves a unit test.

Testing Protected Behavior

A topic of much discussion within the unit testing community is how to test pro-
tected or private methods. Since access to such methods is restricted, writing unit
tests for them is not straightforward.

38 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Some developers deal with this quandary by simply ignoring protected or private
methods and testing only the public interfaces. It’s argued that most of an object’s
behavior is reflected in its public methods. The behavior of the protected methods
can be inferred by the exposed behavior.

There are some drawbacks to this approach. If there are private methods that con-
tain complex functionality, they will not be tested directly. There is a tendency to
make everything public so that it is testable. Some behaviors that should be private
might be exposed.

[t is possible to access and test protected and private methods, depending on the spe-
cifics of how a language defines and enforces object access permissions. In C++,
making the test class a friend of the production class allows it to access protected
interfaces:

class Library {

#ifdef TEST

friend class LibraryTest;
#endif

}

This introduces a reference to the test code into the production code, which is not
good. Preprocessor directives such as #ifdef TEST can omit such references when the
production code is built.

In Java, a simple technique that allows test classes to access protected and private
methods is to declare the methods as package scope and place the test classes in the
same package as the production classes. The next section, “Test Code Organiza-
tion,” shows how to arrange Java code this way.

For Java developers who are not satisfied with the direct approach, the Java Reflec-
tion AP is a tricky way to overcome access protection. The JUnit extension “JUnit-
addons” includes a class named PrivateAccessor that uses this approach to access
protected or private attributes and methods.

The truly hardcore can follow the examples given here to write their own code that
subverts access protection. In Example 4-12, the values of all of Book’s fields are read,
regardless of protection. This approach is an ugly hack. Don’t read this code just
after a meal.

Example 4-12. Example showing use of Reflection API to get private field values

BookTest. java
import java.lang.reflect.*;

public void testGetFields() {
Book book = new Book("test", "test");
Field fields[] = book.getClass().getDeclaredFields();
for (int i = 0; i < fields.length; i++) {
fields[i].setAccessible(true);
try {
String value = (String)fields[i].get(book);

Testing Protected Behavior | 39

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-12. Example showing use of Reflection API to get private field values (continued)

assertEquals("test", value);
} catch (Exception e) {
fail(e.getMessage());

}
}
}

A Book with title and author “test” is created. The Reflection API method
getDeclaredFields() returns an array of all of the Book’s fields, and the call to
setAccessible() allows access to a field. The Reflection API method get() is used to
obtain each field’s value. The test asserts that the value of the field is test.

Similarly, in Example 4-13, all of Book’s get methods are called, ignoring access pro-
tection (although the get methods actually are public).

Example 4-13. Example using Reflection API to invoke methods

BookTest.java
public void testInvokeMethods() {
Book book = new Book("test", "test");
Method[] methods = book.getClass().getDeclaredMethods();
for (int i = 0; i < methods.length; i++) {
if (methods[i].getName().startsWith("get")) {
methods[i].setAccessible(true);

try {
String value = (String)methods[i].invoke(book, null);
assertEquals("test", value);

} catch (Exception e) {
fail(e.getMessage());

}

}
}
}

Paralleling the previous example, the Reflection API method getDeclaredMethods()
returns all of the Book’s methods, and the call to setAccessible() subverts the
method’s access protection. The test checks the method name and calls only those
that have names starting with get to avoid calling Book’s constructor. The Reflection
API method invoke() is used to call the methods. Both get methods should return
the value test, so this condition is asserted.

Hacks aside, the recommended approach is to design objects so that their important
behaviors are public and test those behaviors. Structure the code so that the tests have
access to the protected behaviors as well, so that they can be accessed if necessary.

Test Code Organization

As a project grows in size, organizing the files containing production and test code
becomes an issue. Although keeping the test and production code in the same

40 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

directory is the simplest solution, it is better to have a clean separation between the
two categories of code. This strategy helps avoid build complications that occur
when a directory contains some code that should be linked into the production
application, and some that should not. Including the test code in the delivered appli-
cation is undesirable because it unnecessarily increases the size of the delivery, and
also because the tests may expose behavior or design details that the developer
meant to keep “under the hood.”

Organizing the code is a language-specific concern. In Java, the directory path to a
source file parallels its package membership. The need to test protected interfaces
means that unit tests should belong to the same package as the production classes
they test, so they must have the same directory path. This can be done by creating
separate but parallel hierarchies for the production and test code.

Figure 4-1 shows how the source code for the final version of the virtual library
application is organized. There are three Java packages, com.utf.library, com.utf.
library.gui, and com.utf.library.xml.

DEVROOT | |

Src test
]]
om wom
utf utf
i i
IDrary —I—l IDrary —I—l

gui xml gui xml

Figure 4-1. Organization of production and test code

The production and test code are located in separate directories, src and test, which
are located under the project’s top level DEVROOT directory. For example, the pro-
duction class Library resides in the directory src/com/utf/library, and the test class
LibraryTest is in test/com/utf/library. The test classes’ package names parallel the
production classes’ package names, so the test classes can access and test protected
behavior of the production code. Since the code is in separate directory trees, it is
simple to build and run only the production or test code as desired.

For many other languages, an effective way to organize the code is to place all test
code in a subdirectory named test within each production code directory. This
arrangement keeps the test code separate, but makes linking it to the production
code simple.

Mock Objects

Applications often use interfaces to external objects such as databases, web servers,
network services, or hardware devices. Sometimes you must write and test code to

Mock Objects | 41

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

interface with objects before they are actually available. Even when the external
object is available in the development environment, using it in testing may involve
lots of time-consuming, fragile set-up effort, such as loading test data, running ser-
vices, or placing hardware in a known state. Mock objects are a way of dealing ele-
gantly with this type of situation.

A mock object is a simulation of a real object. Mocks implement the interface of the
real object and behave identically with it, to the extent necessary for testing. Mocks
also validate that the code that uses them does so correctly. To pass the mock’s vali-
dation, other objects must call the correct methods, with the expected parameters, in
the expected order. A test object that simply stands in for a real object without pro-
viding such verification is not a mock; it is a stub.

Databases are commonly mocked objects. Code that interfaces to a database clearly
is important to test. To be tested realistically, the code must be able to perform data-
base operations such as opening and closing connections, reading and writing data,
and performing transactions. However, running a live database in the development
environment can be a pain. Tests often require that the database is in a specific state
or that it contains a specific set of test data. If multiple developers run tests simulta-
neously, their database operations may interfere.

Mocking the database makes having an actual database unnecessary for testing. The
mock has the same interface as the actual database object and the same behavior
from the perspective of the client software, but it doesn’t need to actually contain
anything but a minimal implementation and possibly some test data. Once the data-
base mock is created, it becomes much simpler to write tests that assume that the
database is in various states. Testing becomes faster and easier without the overhead
of interfacing with an actual database engine.

To illustrate this, let’s create a mock object representing a database connection
object. An interface called DBConnection represents a database connection, as shown
in Example 4-14.

Example 4-14. The interface DBConnection, representing a database connection

DBConnection.java
public interface DBConnection {

void connect();

void close();

Book selectBook(String title, String author);
}

The class LibraryDB retrieves Books from a database using DBConnection. It is shown
in Example 4-15.

Example 4-15. The database interface LibraryDB

LibraryDB. java
public class LibraryDB {

42 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-15. The database interface LibraryDB (continued)

private DBConnection connection;

public LibraryDB(DBConnection ¢) {
connection = ¢;
}

Book getBook(String title, String author) {
connection.connect();
Book book = connection.selectBook(title, author);
connection.close();
return book;

}
}

We would like to build a unit test for LibraryDB, but we don’t have an actual data-
base yet. So, we’ll mock DBConnection as shown in Example 4-16.

Example 4-16. The mock object MockDBConnection

MockDBConnection. java
public class MockDBConnection implements DBConnection {

private boolean connected = false;
private boolean closed = false;

public void connect() { connected = true; }

public void close() { closed = true; }

public Book selectBook(String title, String author) {
return null;

}

public boolean validate() {
return connected && closed;
}

}

MockDBConnection implements the public interface of DBConnection, so it can be used
in the interface’s place. MockDBConnection uses the attributes connected and closed to
record that the connect() and close() methods have been called. The validate()
method verifies the connection’s state by checking these flags. So, the expectation set
by the mock is that code using DBConnection must call both connect() and close().

The test class LibraryDBTest is shown in Example 4-17.

Example 4-17. The test class LibraryDBTest

LibraryDBTest.java
import junit.framework.*;
import java.util.*;

public class LibraryDBTest extends TestCase {

Mock Objects | 43

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-17. The test class LibraryDBTest (continued)

public void testGetBook() {
MockDBConnection mock = new MockDBConnection();
LibraryDB db = new LibraryDB(mock);
Book book = db.getBook("Cosmos", "Carl Sagan");
assertTrue(mock.validate());

}
}

The test method testGetBook() creates an instance of MockDBConnection, uses it to
construct a LibraryDB, and then calls the LibraryDB method getBook(). The success
of the test depends on the result of the mock’s validate() function. If the mock is in
the expected state, its validation succeeds and the test passes. The mock object veri-
fies the expected sequence of calls to the database connection and validates that
LibraryDB is interacting with it correctly. It also allows LibraryDB and DBConnection to
be tested without an actual database.

More sophisticated mock objects go beyond simply setting flags for each method
called by recording the arguments provided for method calls, the order of calls, and
other details of the method’s state. In this way, mock objects can perform sophisti-
cated validation of interobject interactions.

Mock objects are a deep topic, covered by numerous web sites, books, and online
groups. Also, a variety of tools are available to support mock object development for
various domains and languages, including EasyMock, jMock, and MockRunner.

AbstractTest

Just like regular classes, abstract classes and interfaces should have their own unit
tests. Designing such tests is not straightforward, because these object types cannot
be directly instantiated. We’d also like to ensure that every descendant of an abstract
class passes the parent object’s tests. The AbstractTest pattern is the answer.

An AbstractTest is itself abstract, like the tested object. It contains an abstract fac-
tory method, which produces an instance of the object to test. It also contains the
test methods for the abstract class. They resemble ordinary unit test methods, but
test instances of the abstract class created by the factory method.

To test a concrete class that is descended from the abstract class, the unit test is sub-
classed from the AbstractTest. Its factory method returns an instance of the concrete
class. When the concrete unit test is run, the AbstractTest is run as well. So, the
AbstractTest tests every concrete implementation of the abstract class.

Let’s create an AbstractTest for the interface DBConnection. We’ll add the method
isOpen() to it, as shown in Example 4-18.

44 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-18. The interface DBConnection

DBConnection.java
public interface DBConnection {
void connect();
void close();
boolean isOpen();
Book selectBook(String title, String author);

}

The AbstractTest should test the behavior of the interface to make sure that any con-
crete implementation of it is correct. Tests of the isOpen() method should verify that
it returns TRUE after connect() is called, and FALSE after close() is called. The
AbstractTest class AbstractDBConnectionTestCase, shown in Example 4-19, provides
these tests.

Example 4-19. The AbstractTest class AbstractDBConnectionTestCase

AbstractDBConnectionTestCase.java
import junit.framework.*;

public abstract class AbstractDBConnectionTestCase extends TestCase {
public abstract DBConnection getConnection();

public void testIsOpen() {
DBConnection connection = getConnection();
connection.connect();
assertTrue(connection.isOpen());

}

public void testClose() {
DBConnection connection = getConnection();
connection.connect();
connection.close();
assertTrue(!connection.isOpen());

}
}

The AbstractTest specifies a factory method, getConnection(). Concrete tests that
descend from it will implement the factory method, allowing the test methods
testIsOpen() and testClose() to test an instance of the concrete class. Notice how
these methods use getConnection() to get the DBConnection to test.

AbstractTests have names ending in “TestCase,” which is different from other test
classes. A separate naming convention for AbstractTest classes makes them easily
recognizable. Some unit test tools assume that any class named ending with “Test”
are test classes that should be instantiated and run, and the different naming conven-
tion avoids confusion.

To see the AbstractTest run, we need to define a concrete class descended from
DBConnection and a corresponding concrete unit test descended from

AbstractTest | 45

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

AbstractDBConnectionTestCase. The concrete class JDBCConnection is shown in
Example 4-20.

Example 4-20. The concrete class JDBCConnection

JDBCConnection.java
public class JDBCConnection implements DBConnection {

private String connectString;
private boolean open;

public JDBCConnection(String connect) {
connectString = connect;
open = false;

}

public void connect() { open = true; }

public void close() { open = false; }

public boolean isOpen() { return open; }

public String getConnectString() { return connectString; }

public Book selectBook(String title, String author) {
return null;

}
}

JDBCConnection is an initial version of an interface to a JDBC database engine. It dif-
fers from the base DBConnection by its member connectString, which contains the
URL of a JDBC database connection.

The unit test IDBCConnectionTest tests JDBCConnection. It is derived from the
AbstractTest. It is shown in Example 4-21.

Example 4-21. The concrete test JDBCConnectionTest

JDBCConnectionTest.java
public class JDBCConnectionTest extends AbstractDBConnectionTestCase {

public DBConnection getConnection() {
return new JDBCConnection("jdbc:odbc:testdb");

}

public void testConnectString() {
JDBCConnection connection = (IDBCConnection)getConnection();
String connStr = connection.getConnectString();
assertTrue(connStr.equals("jdbc:odbc:testdb"));

}
}

JDBCConnectionTest implements the factory method getConnection() and one test
method, testConnectString(). When the test is instantiated and run, the two test
methods in the parent AbstractTest also will be run to test instances of
JDBCConnection. This way, the AbstractTest verifies that the concrete subclass passes
the tests of the parent interface.

46 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Performance Tests

Like the mock object, unit testing for performance is its own significant topic. Soft-
ware performance often is neglected at the unit testing level, and is only taken into
consideration during functional testing. However, performance-oriented unit tests
are powerful tools, especially for applications that require specific performance goals
be met. It’s been reported that Apple’s Safari browser was developed in an environ-
ment that automatically ran performance tests on any code that was checked in. The
code was rejected if it did not meet or exceed the speed standards of previous ver-
sions. Thus, the unit tests ensured that the code’s performance is continuously
improving.

When a piece of code has a performance problem, it is very useful to first write a test
that reveals the problem. This performance test not only lets you know when the
code has achieved the desired performance, but also acts as a “canary in the coal
mine” that indicates if the performance degrades again.

Tools intended specifically for performance-oriented unit testing are available, such
as JUnitPerf. However, it is not difficult to develop performance tests within any unit
test framework. This section gives an example of a unit test that tests the speed of
retrieving a Book from a Library.

The initial question when writing a performance test is this: what is the performance
criterion that the test must meet to pass? Usually, this is expressed in terms of the
amount of time that a certain action may take. If the action takes too long, the crite-
rion has not been met, and the test fails.

The Library class developed so far has a very poorly performing algorithm to get a
Book. It serially reads through the collection of Books, doing string comparisons on
each one until the desired Book is found. This awful lookup stratagem is ideal for
demonstrating a performance test that fails initially, but succeeds after a little refac-
toring. Example 4-22 shows the unit test class LibraryPerfTest.

Example 4-22. Performance unit test LibraryPerfTest

LibraryPerfTest.java
import junit.framework.*;
import java.util.*;

public class LibraryPerfTest extends TestCase {
private Library library;

public void setUp() {
library = new Library();
for (int i=0; i < 100000; i++) {
String title = "book" + 1i;
String author = "author" + i;
library.addBook(new Book(title, author));

Performance Tests | 47

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-22. Performance unit test LibraryPerfTest (continued)

}
}

public void testGetBookPerf() {
double maxTime = 100; // milliseconds
long startTime = System.currentTimeMillis();
Book book = library.getBook("book99999");
long endTime = System.currentTimeMillis();
long time = endTime-startTime;
assertTrue(time < maxTime);
assertEquals("book99999", book.getTitle());

}

LibraryPerfTest is implemented as a test fixture since it is likely that more perfor-
mance tests will be implemented. The setUp() method adds 100,000 Books to the
Library. The test method testGetBookPerf() tests the amount of time it takes to look
up a Book. It uses the method currentTimeMillis() to get the system time before and
after the getBook() operation, calculates the elapsed time, and compares it to a per-
formance criterion of 100 milliseconds (0.1 second). As a sanity check, it also asserts
that the expected Book was found.

With the Vector-based implementation of Library, the unit test fails:

> java -classpath ".;junit.jar" junit.textui.TestRunner LibraryPerfTest
.F
Time: 0.562
There was 1 failure:
1) testGetBookPerf(LibraryPerfTest)junit.framework.AssertionFailedError
at LibraryPerfTest.testGetBookPerf(LibraryPerfTest.java:23)
at sun.reflect.NativeMethodAccessorImpl.invokeo(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

FAILURES!!!
Tests run: 1, Failures: 1, Errors: O

Library can be refactored to use a Hashtable to store Books. (The refactored Library
code is given in the next section, “New Library and Book Code.”) With this change,
lookups by title are efficient, and the test passes:

> java -classpath ".;junit.jar" junit.textui.TestRunner LibraryPerfTest
Time: 0.734

OK (1 test)

The total test time has increased. This is because addBook() takes longer to add a
Book with the Hashtable implementation.

The hardcoded time value of 100 milliseconds used in this example can produce dif-
ferent results when the test is run on faster or slower platforms. Even when run on

48 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

the same platform, varying machine loads and process priorities mean that a perfor-
mance test can succeed or fail on subsequent runs without any code changes.
Accounting for such variations can present a challenge when designing performance
tests. There are a number of techniques to deal with these problems. Consistently
running performance tests on the same platform is helpful. Test timing can be based
on the time required to run a reference operation rather than on a hardcoded time
value, allowing for system performance variations. Timing multiple repetitions of an
operation reduces the effect of transient glitches. Finally, performance tests can use
order-of-magnitude timing ranges rather than exact minimum timings, so that code
meeting general performance goals will pass.

New Library and Book Code

Example 4-23 gives the code for the version of Book referenced in this chapter.

Example 4-23. The class Book

Book.java

public class Book {

private String title = "";

private String author = "";

Book(String title, String author) {
this.title = title;
this.author = author;

}

public String getTitle() { return title; }
public String getAuthor() { return author; }

}

The code for the final version of Library is given in Example 4-24. It uses a Hashtable
to store the collection of Books.

Example 4-24. The class Library

Library.java
import java.util.*;

public class Library {
private Hashtable books;

Library() {
books = new Hashtable();
}

New Library and Book Code | 49

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 4-24. The class Library (continued)

public void addBook(Book book) {
books.put(book.getTitle(), book);

}

public Book getBook(String title) {
return (Book)books.get(title);

}

public Book getBook(String title, String author) {
return (Book)books.get(title);

}

public Vector getBooks(String author) {
Vector auth_books = new Vector();
for (Enumeration e = books.elements(); e.hasMoreElements();) {
Book book = (Book)e.nextElement();
if (book.getAuthor().equals(author))
auth_books.add(book);
}

return auth_books;

}

public void removeBook(String title) throws Exception {
if (books.remove(title) == null)
throw new Exception("Book not found");

}

public int getNumBooks() {
return books.size();
}

public void empty() {
books.clear();
}

50 | Chapter4: Writing Unit Tests

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 5
Unit Testing GUI Applications

Unit tests for ordinary software objects are easy to conceptualize. Objects have
behaviors that are represented by methods and attributes. Tests elicit these behav-
iors to validate them. Unit testing of GUI objects is a different and more complex
problem.

GUI objects are the graphical elements that make up the user interface of most soft-
ware applications. They include windows, buttons, frames, text boxes, menus, and
many other types of widgets. Even very simple applications often contain dozens of
them. GUI objects usually have many behaviors, such as responding to mouse move-
ments or clicks, displaying values, being shown, hidden, highlighted, disabled, and
so forth. You usually build GUI applications from standard toolkits, such as Java’s
Swing, wxWindows for C++, or .NET’s WinForms. Most of the GUI object behav-
ior is provided, and you simply assemble the standard objects and write code only to
implement the custom behaviors of their application.

Doing test-first development of such GUI code is challenging. It may not be hard to
test the process of simply creating and displaying an object, such as a window. As
soon as it becomes necessary to test responses to user actions such as keyboard
entries or mouse clicks, the tests can become very complicated. It often takes a good
deal of messy code to create and test a single GUI element as a standalone unit.
Sometimes it is not even possible to design an automated test that verifies a specific
visual GUI behavior, such as “the dialog box pops up modally showing the alert icon
and the warning message in red.” The test has no way of validating how a dialog
would appear to a user. In general, trying to test application logic by simulating user
interaction with the GUI is labor-intensive and error-prone.

Consider the pseudocode shown in Example 5-1, which represents a typical event-
handling method in a class implementing a dialog window. The code responds to a
mouse click on a button by getting values from the dialog’s text fields, validating
them, calculating a result, and updating a document. If the validation fails, an error
dialog is shown. In either case, the text fields are cleared and the dialog is redrawn.

51

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-1. A typical dialog event handler method

void handleEvent() {
switch (eventType) {
case (buttonClick) :

getTextFieldValues();

if (validateValues()) {
calculateResult();
updateDocument();

} else { // validation failed
showErrorDialog();

}
clearTextFields();

redraw();

}
}

How should this dialog be unit tested? Each step in the event handler is a behavior
that deserves its own unit test. The overall result of clicking on the button should be
tested, as well as the error case when bad values are entered and a message dialog
appears. Testing this will require complex GUI event scripting. For each behavior
tested, the tests may have to create the dialog window, fill in text field values, fire a
mouse click event, verify that the resulting window state is as expected, and close the
dialog. The tests could be affected by unexpected events, such as someone clicking
on the dialog while it is being tested.

So, how can GUI objects be tested effectively, in a way that supports test driven
development? One answer is laid out in an influential paper about this problem:
“The Humble Dialog Box” by Michael Feathers. It points out that building GUIs
using the standard tools usually leads to GUI objects that contain all the application
logic pertaining to their functionality. Such objects are hard to work with in the con-
text of a test harness, and the contained application logic is hard to separate from the
GUI behavior for testing. The way to solve this problem is by creating smart objects
that are not themselves GUI objects, but that contain the functional behavior rele-
vant to a particular GUI object. These smart objects can be easily unit tested like any
other class. Once a smart object is in place, a thin GUI view object called a humble
dialog can be created that knows how to display the smart object’s information, but
that contains no application logic or complex behavior. As much as possible, the
humble dialog contains only GUI objects with standard behavior, as well as get/set
methods that simply read or write values for the GUI elements to display. Testing the
GUI behavior then becomes largely optional. If it is tested, these tests don’t need to
address the functional behavior contained in the smart object.

With the humble dialog approach, the design of GUI object code tends to resemble
that shown in Figure 5-1.

These classes will implement an “Add Book” dialog for creating a Book. It will be a
simple dialog containing a title field, an author field, and Add and Cancel buttons, as
shown in Figure 5-2. The smart object AddBook is where all the functional behavior is

52 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

AddBookView

Tttt +getTitle()
+getAuthor()

AddBook
+add()

Figure 5-1. The smart object AddBook and its view class AddBookView

located. For each behavior, there is a method—in this case, add(). The view class
AddBookView is a thin object containing the actual GUI objects, such as the window
frame, text fields, and buttons. The only custom code it contains is methods to get
the field values. Thus, testing the smart object’s functionality does not require creat-
ing and interacting with the GUI, and testing the view involves only tests of GUI
behavior, not application logic.

AddBook

| Cancel | | Add |

Figure 5-2. GUI design sketch for the AddBook dialog window

Splitting GUI applications into a presentation layer and a business layer that con-
tains all of the logic is an approach that has long been popular. It makes perfect sense
for client-server and web-based applications, where the data and the view are on sep-
arate machines. The document-view model follows this philosophy as well, in which
all the data lives in a document object and all the presentation-related code is con-
tained in view objects. The humble dialog approach differs from these older architec-
tural ideas by emphasizing that all the important functionality must reside in the
smart object. The view object should not contain any functional state, data valida-
tion, or other nontrivial logic. This way, all of the functionality can be validated
without having to perform complex and fragile GUI testing.

Library GUI

This chapter presents a Java Swing implementation of a GUI for the virtual library. It
demonstrates test driven development of a GUI application and serves as a more
realistic example of a working library application than the previous chapters. How-
ever, it is still a demonstration program rather than a practically useful application.

The functional goal of the library GUI is to allow a user to add new Books to a
Library and look up existing Books. Nothing fancy, but like most GUI applications,
there are many elements and behaviors to consider. The application will need a main
window, dialogs for adding and finding Books, and standard GUI functionality such
as being able to open and close windows.

LibraryGUI | 53

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Adhering to the TDD mantra, first identify a behavior and write a test for it. The ini-
tial target is the Add Book dialog described earlier, which provides a GUI interface
for creating a new Book. Example 5-2 shows the unit test for the smart object AddBook.

Example 5-2. Initial unit test for the smart object AddBook

AddBookTest. java
public class AddBookTest extends TestCase {

public void testAddBook() {
Library library = new Library();
AddBook addBook = new AddBook(library);
addBook.add("The Dragons of Eden", "Carl Sagan");
assertNotNull(library.getBooksByTitle("The Dragons of Eden"));

}
}

This test creates an AddBook object, calls its method add(), and verifies that the Book
has been added to the Library. AddBook’s constructor gives the test the Library to
modify; this was an up-front design decision.

The initial implementation of AddBook to pass AddBookTest is shown in Example 5-3.

Example 5-3. Initial version of the smart object AddBook

AddBook. java
public class AddBook {

private Library library;

public AddBook(Library lib) {
library = 1lib;
}

public void add(String title, String author) {
Book book = new Book(title, author);

try {
library.addBook(book);
} catch (Exception e) {}

}
}

Since the method addBook() may throw an exception, add() must catch it. Inform-
ing the user about the error is something to add to the “to-do” list. Otherwise, the
implementation is simple.

The next step is to create the view class, AddBookView. It needs to provide a GUI win-
dow, text fields for the title and author, and Add and Cancel buttons. The window
title should be “Add Book.” The unit test AddBookViewTest verifies all of this, as
shown in Example 5-4.

54 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-4. The unit test AddBook ViewTest

AddBookViewTest.java
public class AddBookViewTest extends TestCase {

public void testControlValues() {
AddBookView view = new AddBookView();
assertEquals("Add Book", view.getTitle());
assertEquals("", view.titleField.getText());
assertEquals("", view.authorField.getText());
assertEquals("Add", view.addButton.getText());
assertEquals("Cancel", view.cancelButton.getText());

}

}

Example 5-5 gives the initial implementation of AddBookView. It is a custom subclass
of the Swing GUI class JFrame and contains only the minimum code necessary to
pass the test. It completely ignores the layout of the controls.

Example 5-5. The initial version of AddBookView

AddBookView. java
import java.awt.*;
import javax.swing.*;

public class AddBookView extends JFrame {

protected JTextField titleField;
protected JTextField authorField;
protected JButton cancelButton;
protected JButton addButton;

public AddBookView() {
super("Add Book");

Container contentPane = this.getContentPane();

// Add labels and text fields

Jlabel labell = new JlLabel("Title", Label.RIGHT);
contentPane.add(label1);

titleField = new JTextField("", 60);
contentPane.add(titleField);

JLabel label2 = new JLabel("Author", Label.RIGHT);
contentPane.add(label2);

authorField = new JTextField("", 60);
contentPane.add(authorField);

// Add buttons

cancelButton = new JButton("Cancel");
contentPane.add(cancelButton);

addButton = new JButton("Add");
contentPane.add(addButton);

LibraryGUI | 55

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

When Java creates a JFrame-derived dialog window, it does not display it until its
show(') method is called. So, the test AddBookViewTest creates, verifies, and destroys
the AddBookView dialog without actually showing it.

Now AddBook can be made to use AddBookView. Some thought must be given to how
the smart object and the humble dialog will interact. They will communicate via an
implicit internal protocol. The ideal architecture will place all the important behav-
ior in the smart object, and will place all the GUI-related code, such as event han-
dling, in the view. Having both the smart object and the view know about each other
is unnecessary. The only necessary interaction between the two is that the view needs
to be able to call the methods on the smart object representing its behaviors, so we
will follow that model. When the view is constructed, it will get a reference to its
smart object.

The most important functionality of this construct is to add a Book when the user
clicks on the Add button in the view. This is a GUI-driven behavior, so the unit test
belongs in AddBookViewTest. It also implicitly tests that the view invokes the smart
object’s add() method. Example 5-6 shows this test.

Example 5-6. AddBook ViewTest with test of the Add button

AddBookViewTest.java
public class AddBookViewTest extends TestCase {

private Library library;
private AddBook addBook;
private AddBookView view;

public void setUp() {
library = new Library();
addBook = new AddBook(library);
view = new AddBookView(addBook);

}

public void testAddButton() {
view.titleField.setText("The Dragons of Eden");
view.authorField.setText("Carl Sagan");
view.addButton.doClick();
assertEquals(1,
library.getBooksByTitle("The Dragons of Eden").size());

}
}

AddBookViewTest is refactored as a test fixture that creates instances of Library,
AddBook, and AddBookView in its setUp() method. The new test method,
testAddButton(), sets the title and author text field values, simulates a user click on
the Add button using the method JButton.doClick(), and verifies that the Book is
added to the Library.

56 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

To pass this test, AddBookView requires a number of additions, including a reference
to an AddBook and the ability to handle the button click event. Example 5-7 shows the
new version of AddBookView. The code to create and add the controls is moved to a
new method, addControls() (which is not shown, for brevity).

Example 5-7. AddBookView with “Add” button functionality

AddBookView.java
public class AddBookView extends JFrame
implements ActionListener {

protected JTextField titleField;
protected JTextField authorField;
protected JButton cancelButton;
protected JButton addButton;
private AddBook addBook;

public AddBookView(AddBook ab) {
super("Add Book");
addBook = ab;
addControls();
addButton.addActionListener(this);
cancelButton.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
System.out.println(cmd);
if (omd.equals("Add")) {
addBook.add(titleField.getText(), authorField.getText());
}

else
System.out.println("cmd not handled: "+cmd);

}
}

The result of the changes to AddBookView is that it receives notification of user events
via the actionPerformed() method. If the event indicates that the Add button was
clicked, it calls the method AddBook.add() with the title and author values.

Now the Add Book dialog can be tried out manually. Example 5-8 shows a simple
executable class called CreateAddBook that creates the dialog.

Example 5-8. Simple executable class to create AddBook dialog
CreateAddBook. java
public class CreateAddBook {

public static void main(String[] args) {
CreateAddBook create = new CreateAddBook();

}

public CreateAddBook() {

LibraryGUI | 57

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-8. Simple executable class to create AddBook dialog (continued)

Library library = new Library();
AddBook addBook = new AddBook(library);
AddBookView view = new AddBookView(addBook);
view.show();
while (view.isVisible()) {}
System.exit(0);

}

}

Assuming that the directory containing the library classes is in the Java CLASSPATH,
CreateAddBook is run as follows:
$ java CreateAddBook

The Add Book dialog appears as just a titlebar. It can be resized to show that the Add
button fills the entire frame, as shown in Figure 5-3.

B add ook SIaTl

Figure 5-3. The AddBook dialog as it initially appears

The dialog is effectively useless because nothing is being done in AddBookView to
arrange and size the controls. Once a better layout is implemented, the dialog looks
much better, as shown in Figure 5-4.

B acanooc ISR

Title

Author

Figure 5-4. The AddBook dialog with improved layout

Example 5-9 shows the method addControls() with the new layout code. Aside from
arranging the controls with a GridBaglayout, the method sets the dialog to a usable
default size with the setSize() method.

Example 5-9. addControls() with improved layout code

AddBookView.java
protected void addControls() {
Container contentPane = this.getContentPane();

58 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-9. addControls() with improved layout code (continued)

contentPane.setlayout(new GridBaglLayout());
GridBagConstraints c = new GridBagConstraints();

// Add labels and text fields

JlLabel labell = new JlLabel("Title", Label.RIGHT);
c.insets = new Insets(2, 2, 2, 2);

c.gridx = 0;

c.gridy = 0;

contentPane.add(label1, c);

titleField = new JTextField("", 60);
titleField.setMinimumSize(new Dimension(180, 30));
c.gridx = 1;

contentPane.add(titleField, c);

Jlabel label2 = new JLabel("Author", Label.RIGHT);
c.gridx = 0;

c.gridy = 1;

contentPane.add(label2, c);

authorField = new JTextField("", 60);
authorField.setMinimumSize(new Dimension(180, 30));
c.gridx = 1;

contentPane.add(authorField, c);

// Add buttons

cancelButton = new JButton("Cancel");

c.gridx = 0;

c.gridy = 2;

contentPane.add(cancelButton, c);

addButton = new JButton("Add");

c.gridx = 1;

contentPane.add(addButton, c);

setSize(300, 140);

}

Why isn’t there a unit test for the new layout code? It is overkill to write unit tests for
purely visual attributes such as layout positions and control sizes. Not only are such
tests tedious to write, but their value is limited. If someone adjusts the position of a
control, the code’s functional behavior does not change, so why should the unit test
fail?

Now a working Add Book dialog is in place, along with unit tests of its functional-
ity. The library GUI needs a lot more to be usable, including a main window, a Find
Book dialog, and a lot of related GUI functionality and application logic. Rather than
walking through all the steps to build this application, this description skips ahead to
the finished result. The final version of the library GUI application contains a num-
ber of GUI elements implemented as smart objects with thin view classes, including:

* AddBook and AddBookView
* FindBookByTitle and FindBookByTitleView

* LibraryFrame and LibraryFrameView

LibraryGUI | 59

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The class LibraryFrame is the main application window with an attached menu bar. It
acts as the parent for the other windows. Closing it causes the application to exit. It
is shown in Figure 5-5.

=l0ixi

Find
Add Book
Exit

Figure 5-5. The LibraryFrame window

Since the view classes have duplicate code and the same interface, it makes sense to
create a common base class. The abstract parent class BaseView is a simple subclass
of JFrame. Example 5-10 shows the code for BaseView.

Example 5-10. The abstract base class BaseView

BaseView.java
public abstract class BaseView extends JFrame
implements ActionListener {

BaseView(String title, int width, int height) {
super(title);
addControls();
setSize(width, height);

}

public abstract void actionPerformed(ActionEvent e);
protected abstract void addControls();

}

BaseView gives the view classes a consistent interface and eliminates code duplication
between them. As an abstract class, BaseView should be tested with an AbstractTest.
BaseViewTestCase is shown in Example 5-11.

Example 5-11. The AbstractTest BaseViewTestCase

BaseViewTestCase.java
public abstract class BaseViewTestCase extends TestCase {

public abstract BaseView getBaseView();

public void testNotVisible() {
BaseView view = getBaseView();

60 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-11. The AbstractTest BaseViewTestCase (continued)

assertFalse(view.isVisible());

}

public void testShow() {
BaseView view = getBaseView();
view.show();
assertTrue(view.isVisible());

}

public void testClose() {
BaseView view = getBaseView();
view.show();
WindowEvent e = new WindowEvent(view,
WindowEvent.WINDOW_CLOSING);
Toolkit.getDefaultToolkit().getSystemEventQueue().postEvent(e);
try {
Thread.currentThread().sleep(100);
} catch(Exception x) {}
assertFalse(view.isVisible());
}
}

The AbstractTest tests three behaviors that all classes derived from BaseView should
exhibit: they are hidden upon creation, become visible after the show() method is
called, and are hidden again after a WINDOW_CLOSING event is sent.

The unit tests for the view classes derived from BaseView should be subclasses of
BaseViewTestCase. Example 5-12 shows AddBookViewTest implemented this way.

Example 5-12. AddBookViewTest implemented as a subclass of BaseViewTestCase

AddBookViewTest.java
public class AddBookViewTest extends BaseViewTestCase {

private Library library;
private AddBook addBook;
private AddBookView view;

public BaseView getBaseView() {
return new AddBookView(addBook);

}

public void setUp() {
library = new Library();
addBook = new AddBook(library);
view = (AddBookView)getBaseView();
view.show();

}

public void tearDown() {
addBook = null;
library = null;

LibraryGUI | 61

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 5-12. AddBookViewTest implemented as a subclass of BaseViewTestCase (continued)
}

public void testAddButton() {
view.titleField.setText("The Dragons of Eden");
view.authorField.setText("Carl Sagan");
view.addButton.doClick();
assertEquals(1, library.getBooksByTitle("The Dragons of Eden").size());
assertEquals("", view.titleField.getText());
assertEquals("", view.authorField.getText());
assertFalse(view.isVisible());

}
}

Note how the test implements and uses the factory method getBaseView() to create
an instance of AddBookView for the tests.

In conclusion, although unit tests for a GUI-driven application use different strate-
gies than tests for ordinary classes, the same basic patterns of unit test development
are followed. Each class has a corresponding test class, and each behavior is tested
with a separate test method.

62 | Chapter5: UnitTesting GUI Applications

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 6

JUnit

Overview

The JUnit unit test framework is the reference implementation of xUnit. As its name
implies, it is developed in and used with Java. It is undoubtedly the most widely
used, extended, and discussed framework for software unit testing today. JUnit is the
foundation for more specialized unit testing tools, including Cactus, Jester, JUnit-
Perf, and many more, and integrates closely with others, such as Ant. The large com-
munity of JUnit users means that it is the basis for many new ideas and
developments in unit testing technology.

The generic xUnit architecture, described in Chapter 3, reflects the architecture of
JUnit. Java is designed from the ground up as a true object-oriented language, incor-
porating many modern features such as pure abstract classes, object reflection, and
native exception-handling. JUnit makes full use of these features.

The purpose of JUnit is to provide a framework for building and running unit tests.
The JUnit distribution also is a great example of a simple, solid software product that
is built using test driven development. Examining its source code is instructive.

JUnit is open source software released under the Common Public License. This
license frees all contributors from any liability or responsibility for the code, and
makes users free to distribute, copy, alter, sell, and otherwise have their way with it.
For details, refer to http://www.opensource.org.

The definitive source for everything pertaining to JUnit is http://www.junit.org. The
information given in this book is based on JUnit 3.8.1, the current version of JUnit as
of this writing.

Architecture

JUnit contains about 75 named classes plus a number of inner classes and interfaces.
[t is organized into packages, as shown in Figure 6-1.

63

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

/ junit \
framework
R R > R EEEE R
: NN :
tests runner extensions
CARA A
awtui swingui

Figure 6-1. The JUnit packages and their import dependencies

The package junit.framework represents the core functionality, and the foundation
on which unit tests are built. Much of the rest of the code is the relatively complex
Swing, AWT, and text user interface (UI) packages, the package junit.samples (con-
taining unit test examples), and the package junit.tests (containing JUnit’s own
unit tests). JUnit’s developers “eat their own dog food” by providing a complete set
of unit tests for all of its functionality.

The class architecture for the package junit.framework is shown in Figure 6-2.

«interface»

e
201

\ 4
| +TestSuite | | +TestCase | |+AssertionFaiIedError|

| +ComparisonFailure |

dnterface» | o o ——] dnterface»
+Protectable < +estResult » +TestListener

Figure 6-2. Class architecture of the package junit.framework

The architecture of junit.framework follows the generic xUnit architectural model
described in Chapter 3. In particular, notice a key architectural element, the interface

64 | Chapteré6: JUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Test, which is implemented by the classes TestCase and TestSuite. The abstract class
TestCase is the parent of all unit test classes.

As described in Chapter 3, the key classes used when building unit tests are TestCase,
TestSuite, and the TestRunners. Appendix B is a detailed class reference for the
junit.framework package.

Usage

This section presents a quick overview of basic JUnit usage. The xUnit examples in
the previous chapters provide a more detailed review of how to use JUnit.

Test classes in JUnit are subclasses of TestCase. Tests can be built in a number of
ways, but the conventional approach is described here. The name of the test class
starts with the name of the object being tested and ends with Test. Test classes con-
tain a separate test method for each behavior being tested. Test methods are named
starting with test.

Test conditions are checked with test assert methods. Test asserts result in test suc-
cess or failure. If the assert fails, the test method returns immediately. If it succeeds,
the execution of the test method continues. Since a test method should only test a
single behavior, in most cases, each test method should only contain one test assert.

If there are objects that are shared by the test methods, they should be initialized in
the setUp() method and destroyed in tearDown(). These methods are called before
and after each test method call, effectively recreating the test fixture for each test,
thereby providing test isolation.

Example 6-1 shows a test class built following this model, called LibraryTest, that
(naturally) tests the class Library.

Example 6-1. The test class LibraryTest

LibraryTest.java
import junit.framework.*;
import java.util.*;

public class LibraryTest extends TestCase {
private Library library;

public void setUp() throws Exception {
library = new Library();
library.addBook(new Book("Cosmos", "Carl Sagan"));
library.addBook(new Book("Contact", "Carl Sagan"));
library.addBook(new Book("Solaris", "Stanislaw Lem"));
library.addBook(new Book("American Beauty", "Allen M Steele"));
library.addBook(new Book("American Beauty", "Edna Ferber"));

Usage | 65

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 6-1. The test class LibraryTest (continued)

public void tearDown() {
library.empty();
library = null;

}

public void testGetBooksByTitle() {
Vector books = library.getBooksByTitle("American Beauty");
assertEquals("wrong number of books found", 2, books.size());

}

public void testGetBooksByAuthor() {
Vector books = library.getBooksByAuthor("Carl Sagan");
assertEquals("2 books not found", 2, books.size());

}

public void testEmpty() {
library.empty();
assertEquals("library not empty", 0, library.getNumBooks());

}
}

LibraryTest is a test fixture because there are multiple test methods sharing an
object—in this case, an instance of Library. The Library is created and loaded with a
set of Books in setUp() and emptied and disposed of in tearDown().

Each test method verifies a distinct behavior of the Library class with a single test
assert. Although the tests may modify the Library, as shown by testEmpty(), the test
fixture functionality guarantees that each test runs in a clean fixture, without depen-
dencies on the results of the others.

Tests are run using one of the TestRunner tools provided with JUnit. The simplest
and most easily automated of these is TextTestRunner. Example 6-2 demonstrates
using TextTestRunner to run LibraryTest.

Example 6-2. Running LibraryTest with the TextTestRunner

$ java junit.textui.TestRunner LibraryTest

Time: 0.01

0K (3 tests)

It often is useful to aggregate multiple tests so they can be run together. The class
TestSuite is used to contain a collection of tests. Example 6-3 shows a class,
LibraryTests, which creates a TestSuite containing a number of test classes. The
static method suite() creates and returns the TestSuite.

Example 6-3. The class LibraryTests

LibraryTests.java
import junit.framework.*;

66 | Chapteré6: JUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 6-3. The class LibraryTests (continued)

public class LibraryTests extends TestSuite {

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new TestSuite(BookTest.class));
suite.addTest(new TestSuite(LibraryTest.class));
suite.addTest(new TestSuite(LibraryDBTest.class));
suite.addTest(new TestSuite(LibraryPerfTest.class));
return suite;

}

When LibraryTests is run using TextTestRunner, all of the test methods in each test
class are found and run, as shown in Example 6-4.

Example 6-4. Running the LibraryTests test suite

$ java junit.textui.TestRunner LibraryTests

Time: 0.851

OK (17 tests)

The GUI TestRunner can be used instead of TextTestRunner. The Swing version of
TestRunner is invoked for LibraryTest as shown:

$ java junit.swingui.TestRunner LibraryTest

Figure 6-3 shows the result after the TestRunner GUI runs LibraryTest.

Test Assert Methods

A range of test assert methods are provided by JUnit. They are implemented as pub-
lic static methods of the class Assert, which is a parent class of TestCase. Thus, every
test class inherits these methods.

The most generic test assert method is assertTrue(), which simply passes or fails
based on the value of a Boolean argument. The other test assert methods are special-
ized versions of assertTrue() that handle particular types of test conditions. For
example, the following test assert statements are equivalent:

assertTrue(book.title.equals("Cosmos"));
assertEquals("Cosmos", book.title);

These statements are equivalent as well:

assertTrue(false)
fail()

The specialized test assert methods are useful because they save coding effort, are
easier to read, and allow more specific reporting of the results.

Test Assert Methods | 67

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

=01

JUnit

Test class name:
LibraryTests || - |[rm |

[¥] Relnad classes evens run

' U

Burs: 1717 X Errors: 0 X Failures: 0

Results:

3 junit framewnrk TestSuited@ 102067 RLn
@ 1 BookTest

& 3 LibranTest
o 3 LibrayDETest
@[LibrayFPerTast

M ‘é Test Hierarchy |

4] [¥
Finishad:1.2?2 seconds Exit

Figure 6-3. The Swing TestRunner after LibraryTest is run

The assert methods all have two variants, one that takes a String message as the first
argument, and one that doesn’t. The message allow you to provide a more detailed
description of an assertion failure.

The assertEquals() methods compare the values of two arguments. They assume
that the first value is the correct or “expected” value to which the second “actual”
value should be compared. These methods will work if the arguments are reversed,
but the failure message will be misleading.

The JUnit assert methods are described in the following list:

static void assertTrue(boolean condition)

static void assertTrue(message, boolean condition)
The assertTrue assertion passes if condition is true. This is the most generic
type of assertion.

static void assertFalse(boolean condition)
static void assertFalse(message, boolean condition)
Test passes if condition is false.

68 | Chapteré6: JUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

static void assertEquals(expected, actual)

static void assertEquals(message, expected, actual)
Test passes if expected and actual are equal. Versions of this method exist to
compare arguments of type boolean, byte, char, int, long, Object, short, or
String.

static void assertEquals(expected, actual, delta)

static void assertEquals(message, expected, actual, delta)
Asserts equality of two values within a tolerance of delta. A delta of 0.0 tests
exact equality. Versions of this method exist to handle arguments of type double
or float.

static void assertNotNull(Object object)
static void assertNotNull(message, Object object)
Test passes if Object is not null.

static void assertNull(Object object)
static void assertNull(message, Object object)
Test passes if Object is null.

static void assertNotSame(Object expected, Object actual)

static void assertNotSame(message, Object expected, Object actual)
Test passes if the two Objects are not the same Object, as determined by the ==
operator.

static void assertSame(Object expected, Object actual)

static void assertSame(message, Object expected, Object actual)
Test passes if the two Objects are the same Object, as determined by the ==
operator.

static void fail()
static void fail(message)
Test that always fails. It is equivalent to assertTrue(false).

Test Assert Methods | 69

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 7

CppUnit

Overview

CppUnit is a port of JUnit to C++, and was originally authored by Michael Feathers
and Jerome Lacoste. Its basic architecture and usage closely follow the xUnit model.
The implementation details differ from JUnit as a result of design choices by Cpp-
Unit’s developers and language differences between Java and C++. CppUnit’s imple-
mentation makes full use of advanced C++ language features, including templates,
abstract classes, nested classes, and the Standard Template Library (STL) It also
makes extensive use of C macros, which some consider inelegant and error-prone,
but are definitely useful here. CppUnit is designed to be thread-safe.

CppUnit is open source software released under the GNU Lesser General Public
License. This license makes the code free for use, modification, and redistribution.
For details, refer to http://www.gnu.org.

The CppUnit project is based at http://cppunit.sourceforge.net. The information given
here is for CppUnit Version 1.8.0.

Architecture

CppUnit contains 24 ordinary classes, 4 abstract classes, 7 template classes, and sev-
eral nested classes and helper macros. Everything belongs to the namespace “CppU-
nit” or one of its subordinate namespaces. The CppUnit namespaces are shown in
Figure 7-1.

Most of the code belongs to the main namespace, “CppUnit.” The namespace
“Asserter” contains assertion functions used in test assert macros. “TestAssert” con-
tains the function template assertEquals() and the method assertDoubleEquals().
The “Ui” namespaces contain text, MFC, and QT versions of TestRunner.

Just as in JUnit, CppUnit’s central design element is an abstract interface called Test
implemented by classes named TestCase and TestSuite, as shown in Figure 7-2.

70

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

/CppUnit N

Asserter TestAssert

TextUi MfcUi QtUi

Figure 7-1. The CppUnit namespaces

/\

/\

Figure 7-2. The key Test classes

TestCase represents an actual test object, and TestSuite is a composite of other Test
objects. The class TestFixture represents the test fixture interface implemented by
TestCase, with setUp() and tearDown() methods.

The object architecture for collecting test results is more complex than in JUnit. The
key classes pertaining to test result handling are shown in Figure 7-3.

| SynchronizedObject |
[ﬁ /\
uses | |
é::::. """] TestSucessListener |

------- | TestResultCollector |

Figure 7-3. Classes to collect test results

The class TestResult receives test results as Test objects are run. However, it does
not store the results but instead uses the TestListener interface to inform observers
of test results. The TestListener subclass TestResultCollector stores the test results
for reporting. As shown in Figure 7-3, these classes are derived from Synchronized-
Object. This allows their operations to be mutex-protected so that tests and listeners
may execute safely in separate, concurrent threads.

Output of test results is handled by classes implementing the Outputter interface,
shown in Figure 7-4.

Architecture | 71

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

| TextOutputter | | XmlOutputter | | CompilerOutputter |

Figure 7-4. The Outputter classes for printing test results

The Outputter objects print the test results in human-readable text format, as an
XML document, or in an IDE-compatible (“compiler”) format.

The class TestRunner provides a convenient interface for running tests. CppUnit
includes a generic text TestRunner as well as GUI versions of TestRunner for use in Qt
and MFC development environments.

Appendix C is a class reference giving the low-level design details of CppUnit.

Usage

When writing unit tests using CppUnit, the general xUnit model is followed, as
described in Chapters 3 and 6. Test objects are derived from TestCase and are run
using a TestRunner. A number of code examples are given here to illustrate details of
its usage. The examples are unit tests of a simple class named Book, shown in
Example 7-1.

Example 7-1. The class Book

Book.h
using std::string;

class Book {
public:
Book(string const &title)
:om_title(title) {}

string getTitle() { return m_title; }

private:
string m_title;

};

The simplest way to write a CppUnit unit test is to derive a class from TestCase and
override its runTest() method. An example of such a unit test is given in
Example 7-2.

72 | Chapter7: CppUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 7-2. The simple test class BookTest

BookTest.h
#include "cppunit/TestCase.h"
#include "Book.h"

using std::string;
class BookTest : public CppUnit::TestCase {

public:
BookTest(string const &name) : CppUnit::TestCase(name) {}

void runTest() {
Book book("Cosmos");
CPPUNIT_ASSERT(book.getTitle() == "Cosmos");

}
};

The test method runTest() creates a Book and uses the test assertion macro
CPPUNIT ASSERT() to test the title value. The test class is run by calling runTest().
The simple program in Example 7-3 illustrates this.

Example 7-3. A simple program to run the test class BookTest

test.cpp
#include <iostream>
#include "BookTest.h"

int main() {

try {
BookTest test("BookTest");
test.runTest();
std::cout << "SUCCESS!" << std::endl;
return 0;

} catch (...) {
std::cout << "FAILURE!\n" << std::endl;
return 1;

}
}

If runTest (') throws an exception, the failure is reported. Here, the test succeeds:

> ./test
SUCCESS!

The test can be made to fail by changing the title test value:
CPPUNIT ASSERT(book.getTitle() == "Moscow");
The output reports the failure:

> ./test
FAILURE!

Usage | 73

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The program test returns an error code of 1 in case of failure, which can be useful if
an automated test script runs it.

This basic approach to writing unit tests is cumbersome. A new test class is imple-
mented for each test method, and the runTest() method for each one must be called
directly. The test results are reported only in a very simple way, as overall success or
failure, with no details about what was tested and what failed.

The next step in increasing the sophistication of CppUnit test development is to
implement unit tests as test fixtures, which allows multiple test methods to be imple-
mented in one test class. Running them using a TestRunner provides nice reporting of
the results.

An author attribute is added to Book in Example 7-4.

Example 7-4. Book with an author attribute
Book.h
using std::string;

class Book {

public:
Book(string const &title, string const &author)
: m_title(title), m_author(author) {}

string getTitle() { return m_title; }
string getAuthor() { return m_author; }

private:
string m_title;
string m_author;

};

BookTest can have two test methods, one testing each attribute of Book. Since both
test methods can test the same Book, it makes sense to implement BookTest as a fix-
ture. Example 7-5 shows the new version of BookTest.

Example 7-5. BookTest written as a test fixture with two test methods
BookTest.h

#include "cppunit/TestCase.h"

#include "Book.h"

using std::string;

class BookTest : public CppUnit::TestFixture {

private:
Book *book;

public:

74 | Chapter7: CppUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 7-5. BookTest written as a test fixture with two test methods (continued)

void setUp() {
book = new Book("Cosmos", "Carl Sagan");
}

void tearDown() {
delete book;
}

void testTitle() {
CPPUNIT_ASSERT_EQUAL(string("Cosmos"), book->getTitle());

}

void testAuthor() {
CPPUNIT_ASSERT_EQUAL(string("Carl Sagan"), book->getAuthor());

}
};

The fixture contains a test Book, which is created in setUp() and deleted in tearDown().
The two test methods are named testTitle() and testAuthor(). It is conventional to
give test methods a name starting with “test”.

The test assertion macro CPPUNIT ASSERT EQUAL() is used to test the value of the
title and author attributes. This macro handles arguments of many common data
types, including std: : string, as shown in Example 7-5.

The test program can use the text TestRunner to run BookTest, as shown in
Example 7-6.

Example 7-6. Using the text TestRunner to run BookTest

test.cpp

#include "cppunit/ui/text/TestRunner.h"
#include "cppunit/TestCaller.h"
#include "BookTest.h"

int main() {
CppUnit: :TextUi: :TestRunner runner;
runner.addTest(new CppUnit::TestCaller<BookTest>(
"testTitle",
&BookTest: :testTitle));
runner.addTest(new CppUnit::TestCaller<BookTest>(
"testAuthor",
&BookTest: :testAuthor));
if (runner.run())
return 0,
else
return 1;

Usage | 75

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

A TestCaller is created for each test method and added to the TestRunner using its
addTest() method. The TestRunner runs each test method as a separate test—setting
up and tearing down the fixture each time—and then reports the test results:

> ./test

OK (2 tests)
A failure can be produced in testAuthor() by changing the test condition:
CPPUNIT_ASSERT EQUAL(string("Anonymous"), book->getAuthor());

The details of the failure are reported, including the test name and source code loca-
tion for the assertion that failed:

> ./test
..F

I IFAILURES!!!
Test Results:
Run: 2 Failures: 1 Errors: O

1) test: testAuthor (F) line: 25 BookTest.h
expected: Anonymous
but was: Carl Sagan

As multiple text fixtures are developed, they can be added to a TestSuite, which
aggregates them and makes running them a one-step operation. Example 7-7 demon-
strates creating a TestSuite. The static method suite() is added to BookTest to
return its suite of tests.

Example 7-7. Creating a TestSuite for BookTest’s test methods

BookTest.h
static CppUnit::Test *suite()
{
CppUnit::TestSuite *suite
= new CppUnit::TestSuite("BookTest");
suite->addTest(new CppUnit::TestCaller<BookTest>(
"testTitle",
&BookTest: :testTitle));
suite->addTest(new CppUnit::TestCaller<BookTest>(
"testAuthor",
&BookTest: :testAuthor));
return suite;

}

The code to run the tests is simplified when they are run as a suite, as shown in
Example 7-8.

76 | Chapter7: CppUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 7-8. Running the test suite with the TestRunner

test.cpp

#include "cppunit/ui/text/TestRunner.h"
#include "cppunit/TestCaller.h"
#include "BookTest.h"

int main() {
CppUnit::TextUi::TestRunner runner;
runner.addTest(BookTest::suite());
if (runner.run())
return 0;
else
return 1;

}

CppUnit includes helper macros that eliminate some of the coding effort by auto-
matically creating TestSuite objects. The static method suite() in BookTest can be
replaced by a series of macro calls, as shown in Example 7-9.

Example 7-9. Using helper macros to replace the suite() method

BookTest.h
CPPUNIT TEST SUITE(BookTest);
CPPUNIT TEST(testTitle);
CPPUNIT TEST(testAuthor);
CPPUNIT TEST SUITE_END();

The macro call CPPUNIT TEST SUITE() creates the static method suite() to return a
TestSuite. The CPPUNIT TEST() calls add the two test methods to the suite. The call
CPPUNIT TEST SUITE_END() is necessary to end the declaration of the suite.

The macro CPPUNIT TEST EXCEPTION() adds a test method that is expected to throw
an exception to the test suite. The test passes if the expected exception is thrown. To
demonstrate this, the constructor for Book is modified to throw an std: :exception if
the title is empty. Example 7-10 shows the new test method for this behavior,
testInvalidTitle(), and shows how it is added to the test suite.

Example 7-10. Using CPPUNIT_TEST_EXCEPTION to add an expected exception test

BookTest.h
void testInvalidTitle() throw (std::exception) {
Book *badBook = new Book("", "Mark Twain");

}

CPPUNIT TEST SUITE(BookTest);

CPPUNIT TEST(testTitle);

CPPUNIT TEST(testAuthor);

CPPUNIT_TEST_EXCEPTION(testInvalidTitle, std::exception);
CPPUNIT TEST SUITE_END();

Example 7-11 shows the Book constructor modified to throw an std: :exception.

Usage | 77

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 7-11. Book constructor modified to throw exception

Book.h
Book(string const &title, string const &author)
: m title(title), m_author(author)
{

if (m_title.empty())
throw std::exception();

}

When run, testInvalidTest() creates a Book with an empty title, the constructor
throws the expected exception, and the test passes.

The similar macro CPPUNIT TEST FAILURE() adds a test that is expected to fail to the
test suite, as shown in Example 7-12.

Example 7-12. Adding an expected failure test to the test suite

BookTest.h
void testAlwaysFails() {
CPPUNIT FAIL("Expected failure");
}

CPPUNIT TEST SUITE(BookTest);
CPPUNIT TEST FAIL(testAlwaysFails);
CPPUNIT TEST SUITE_END();

Another useful helper macro is CPPUNIT TEST SUITE REGISTRATION(). It is used to reg-
ister test suites with the TestFactoryRegistry, as shown in Example 7-13.

Example 7-13. Registering a test suite and using the registry to create a test

test.cpp

#include "cppunit/ui/text/TestRunner.h"
#include "cppunit/TestCaller.h"
#include "BookTest.h"

int main() {
CPPUNIT_TEST_SUITE_REGISTRATION(BookTest);

CppUnit::TextUi::TestRunner runner;
CppUnit::TestFactoryRegistry ®istry

= CppUnit::TestFactoryRegistry::getRegistry();
runner.addTest(registry.makeTest());
if (runner.run())

return 0;
else

return 1;

}

The registry automatically creates a TestSuite containing all of the registered tests.
The call registry.makeTest() returns the TestSuite to run. This feature is

78 | Chapter7: CppUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

particularly useful when there are many tests and writing the code to add them all to
a TestSuite would be tedious.

The related helper macro CPPUNIT TEST SUITE NAMED REGISTRATION() is used to add
TestSuite objects to a named registry. The named registry is used to create a
TestSuite containing its set of registered tests. This allows tests to be divided into
groups that may be run separately.

Test Assert Methods

CppUnit provides several variations on the basic assert method. The assert methods
are implemented as macros. The advantage of using macros to implement assert
methods is that they enable the compiler preprocessor to record the source code
location of each assert, which is otherwise hard to do in C.

As in other xUnits, some of the asserts have variants that take a descriptive message
argument. The message is reported if the test fails. Examples of these variants are
shown in the following list:

CPPUNIT ASSERT(condition)
CPPUNIT ASSERT MESSAGE(message,condition)
Test that passes if condition is true.

CPPUNIT_FAIL(message)
Test that always fails.

CPPUNIT ASSERT EQUAL(expected,actual)

CPPUNIT ASSERT EQUAL MESSAGE(message,expected,actual)
Test that passes if expected and actual are equal. It supports arguments of most
common data types and std: :string.

CPPUNIT ASSERT DOUBLES EQUAL(expected,actual,delta)
Test that passes if expected and actual are equal within a tolerance of delta. The
arguments are of type double.

Test Assert Methods | 79

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 8
NUnit

Overview

NUnit is a unit test framework for the Microsoft .NET architecture. Conceptually, it
follows the xUnit model, serving as a foundation for building unit test classes and
methods. It is implemented in C#, but supports writing unit tests in any .NET lan-
guage, including C#, J#, Managed C++, and Microsoft Visual Basic .NET (VB.NET).
NUnit defines tests using C# attributes rather than object inheritance, so the details of
its software architecture differ significantly from JUnit.

NUnit is open source software released under a public license. The license permits
NUnit to be freely redistributed and altered, as long as the original copyright notice
is included and any alterations are acknowledged. The copyright holders and main
developers of NUnit are James Newkirk, Michael Two, Alexei Vorontsov, Philip
Craig, and Charlie Poole.

For additional information refer to the NUnit web site, http://www.nunit.org. The
summary in this chapter is based on Version 2.1.

Architecture

NUnit is a full-featured unit test framework built using TDD. The distribution
includes unit tests covering all of NUnit’s functionality. Aside from the core frame-
work, NUnit also includes GUI and console test runners, code samples, extensions,
and utilities.

NUnit relies on C# attributes to structure test code. In contrast to the conventional
object-oriented definition of an attribute, a C# attribute is metadata attached to a
code element such as a class or method. These attributes contain descriptive declara-
tions that may be accessed at runtime. NUnit attributes such as Test and TestFixture
allow the test framework to identify test methods and classes. This approach makes

80

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

it possible to build unit tests with minimal knowledge of the underlying NUnit code
structure.

Usage

A test class is defined using the TestFixture attribute. Test methods are defined
using the Test attribute. Example 8-1 shows a simple unit test for the class Book. The
source code for the classes Book and Library is given at the end of this section.

Example 8-1. The test class BookTest

BookTest.cs
using System;

namespace LibraryTests

{
using Library;
using NUnit.Framework;
[TestFixture]
public class BookTest
{
[Test]
public void TestCreateBook()
{
Book book = new Book("Cosmos", "Carl Sagan");
Assert.AreEqual("Cosmos", book.title, "wrong title");
Assert.AreEqual("Carl Sagan", book.author, "wrong author");
}
}
}

In this example, the test class BookTest is defined as a TestFixture, and the method
TestCreateBook() is a Test. At runtime, all of the Test methods are found and run.

The attributes SetUp and TearDown are used to implement test fixture behavior. The
SetUp method is called prior to each Test method, and the TearDown method is called
afterwards. Example 8-2 shows a test for the class Library, implemented as a test
fixture.

Example 8-2. The test class LibraryTest

LibraryTest.cs
using System;

namespace LibraryTests

{
using Library;
using NUnit.Framework;

Usage | 81

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 8-2. The test class LibraryTest (continued)

[TestFixture]
public class LibraryTest
{
private Library library;
[SetUp]
public void SetUp()
{

library = new Library();
library.addBook(new Book("Cosmos", "Carl Sagan"));
library.addBook(new Book("Contact", "Carl Sagan"));

}

[TearDown]

public void TearDown()

{

}

[Test]

public void TestGetBookByTitleAndAuthor()

{
Book book = library.getBook("Cosmos", "Carl Sagan");
Assert.AreEqual("Cosmos", book.title, "wrong title");
Assert.AreEqual("Carl Sagan", book.author, "wrong author");

}

[Test]

public void TestRemoveBook()

{
library.removeBook("Cosmos");
Book book = library.getBook("Cosmos", "Carl Sagan");
Assert.IsNull(book, "book not removed");

}

}

The SetUp() method creates a Library and adds two Books to it. Since C# has auto-
matic garbage collection, it is not necessary for the TearDown() method to deallocate
the test objects.

Like other xUnits, NUnit provides numerous test assert methods. Examples 8-1 and
8-2 demonstrate usage of Assert.AreEqual() and Assert.IsNull().

Methods identified by the attributes TestFixtureSetUp and TestFixtureTearDown act
similarly to SetUp and TearDown, but are called only once for a given TestFixture
rather than for each test method. This feature is useful when it is undesirable to ini-
tialize an object multiple times, such as when creating it is computationally inten-
sive. However, TestFixtureSetUp and TestFixtureTearDown should be used with
caution because they introduce the potential for test coupling. If multiple test meth-
ods share an object that may change state during the test, the tests are not isolated.

82 | Chapter8: NUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Using TestFixtureSetUp is safe when the shared objects being initialized cannot be
affected by the test methods. Example 8-3 shows how TestFixtureSetUp and
TestFixtureTearDown could be used in LibraryTest.

Example 8-3. The test class LibraryTest, using TestFixtureSetUp

LibraryTest.cs
[TestFixtureSetUp]
public void TestFixtureSetUp()

{

book1 = new Book("Cosmos", "Carl Sagan");
book2 = new Book("Contact", "Carl Sagan");

}

[TestFixtureTearDown]
public void TestFixtureTearDown()

{

}

[SetUp]

public void SetUp()

{
library = new Library();
library.addBook(book1);
library.addBook(book2);

}

[TearDown]

public void TearDown()

{

}

Since the Book objects won’t be modified by the test methods, they can safely be cre-
ated in TestFixtureSetUp() without risking test coupling. The test methods can
change the state of the Library object, so it must be initialized in SetUp(') to guaran-
tee that it is in the same state for each test.

When LibraryTest is run, the sequence of calls is:

TestFixtureSetUp()

SetUp()
TestGetBookByTitleAndAuthor()
TearDown()

SetUp()

TestRemoveBook()

TearDown()
TestFixtureTearDown()

The TestFixtureSetUp() and TestFixtureTearDown() methods are called once for the
test fixture, whereas SetUp() and TearDown() are called for each test method.

Usage | 83

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

NUnit supports writing tests for expected error behavior using the ExpectedException
attribute. Example 8-4 shows a LibraryTest test method to check that attempting to
remove a nonexistent Book causes an Exception to be thrown.

Example 8-4. The test method TestRemoveNonexistentBook

LibraryTest.cs
[Test]
[ExpectedException(typeof(Exception))]
public void TestRemoveNonexistentBook()

{
}

library.removeBook("Nonexistent");

The attribute ExpectedException(typeof(Exception)) indicates that the test method
is expected to throw an Exception. If an Exception is not thrown, the test fails. The
attribute Test still is necessary to indicate that this is a test method.

Another NUnit attribute is Ignore, which specifies that a test method should not be
run. This can be useful for temporarily disabling a failing test. Example 8-5 demon-
strates its usage.

Example 8-5. The test method TestBadTest

LibraryTest.cs
[Test, Ignore("Bad test")]
public void TestBadTest()

{
}

Assert.Fail("Always fails");

Since the test method TestBadTest() has the Ignore attribute, NUnit will not run it.
Attributes can be combined, as shown by the compound Test and Ignore attributes.

NUnit tests are run using the NUnit GUI or a console test runner. When using the
GUI, the File = Open menu command is used to open the .DLL or .EXE file contain-
ing the unit tests. The tests found are displayed in the GUI as a hierarchy of test fix-
tures and test methods. The Run button executes the tests and displays their results,
as shown in Figure 8-1.

Successful tests are flagged green and failures are red. Tests marked with the Ignore
attribute are not run and are flagged with a yellow mark. The status bar on the right
indicates the overall result: green if everything succeeds, red if there is a failure, and
yellow if any tests are skipped.

Running tests using the console test runner is similar, as shown in Example 8-6.

84 | Chapter8: NUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

B Library.dll - NUnit j =10 x|

File ‘iew Project Tools Help

B Cawork\Librare dll
= s LibraryTests Bun Stop Library.dl
B BookTest
(. TestCreateBook
EI LibrarTest
""" TestBadTest) Tests Mot Bun EDnsuIe.EnDrI EDnsuIe.DutI
TestGetBookByTitleAndduthar _I
TestRemoveBook

e TestRemoveMonexiztentBook

4]

Completed Test Casez: B Testz Run: 4 Failures : 0 Time : 0.0600864

[| 3

Figure 8-1. The NUnit GUI

Example 8-6. Running tests using the NUnit console

>nunit-console.exe C:\Work\Library.dll

Tests run: 4, Failures: 0, Not run: 1, Time: 0.050072 seconds

Tests not run:
LibraryTests.LibraryTest.TestBadTest : Bad test

Test failures and tests that are not run are reported, along with the total number of
tests.

The C# class Book referred to in this chapter is shown in Example 8-7.

Example 8-7. The class Book

Book.cs
using System;

namespace Library

{

public class Book

{
public string title;
public string author;

public Book(string title, string author)
{

Usage | 85

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 8-7. The class Book (continued)

this.title = title;
this.author = author;

¥
}
}

The class Library is shown in Example 8-8.

Example 8-8. The class Library

Library.cs
using System;
using System.Collections;

namespace Library

{

public class Library

{

private Hashtable books;

public Library()

{
books = new Hashtable();

}

public void addBook(Book book)

{
books.Add(book.title, book);

}

public Book getBook(string title, string author)

{
return (Book)books[title ;

}

public void removeBook(string title)

{
if (books[title] == null)
throw new Exception("book not found");
books.Remove(title);

}
}

Test Assert Methods

NUnit provides a variety of test assert methods. Each one has a variant taking a
message parameter, which appears as a descriptive message when the test fails.

The test assert methods referenced here are static methods of the class Assert. Addi-
tional test assert methods exist in the class Assertion, but they are obsolete and not
recommended for use.

86 | Chapter8: NUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

IsTrue(bool condition)
IsTrue(bool condition, string message)
Test passes if condition is true. This is the most generic type of assert.

IsFalse(bool condition)
IsFalse(bool condition, string message)
Test passes if condition is false.

AreEqual(decimal expected, decimal actual)
AreEqual(decimal expected, decimal actual, string message)
AreEqual(int expected, int actual)
AreEqual(int expected, int actual, string message)

Test passes if expected and actual are numerically equal.

AreEqual(double expected, double actual, double delta)
AreEqual(double expected, double actual, double delta, string message)
AreEqual(float expected, float actual, float delta)
AreEqual(float expected, float actual, float delta, string message)
Test passes if expected and actual are numerically equal within a tolerance of
delta. If delta is 0, exact equality is necessary for test to pass.

AreEqual(Object expected, Object actual)

AreEqual(Object expected, Object actual, string message)
Test passes if expected and actual are equal. If both are numeric types, they are
tested for numerical equality. Otherwise, the method Object.equals() is used to
test equality.

AreSame(Object expected, Object actual)
AreSame(Object expected, Object actual, string message)
Test passes if expected and actual refer to the same Object.

IsNotNull(Object anObject)

IsNotNull(Object anObject, string message)
Test passes if anObject is not null.

IsNull(Object anObject)

IsNull(Object anObject, string message)
Test passes if anObject is null.

Fail()

Fail(string message)
Test assert that always fails.

Test Assert Methods | 87

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 9

PyUnit

Overview

PyUnit brings xUnit to Python. Python is an interpreted, interactive, object-oriented
programming language, widely used for many different kinds of software develop-
ment. Steve Purcell ported JUnit to Python to create PyUnit. It follows the generic
xUnit model closely. The standard Python libraries have included PyUnit since
Python 2.1.

Python is open source software that is copyrighted but freely usable and distribut-
able. PyUnit has the same terms as Python itself, with a stipulation that Steve Purcell
be credited as the author in the source code and any accompanying documentation.

For more information about Python, see http://www.python.org. PyUnit’s home is
http://pyunit.sourceforge.net. The information in this chapter is based on Python 2.3.3,
which includes Version 1.4.6 of PyUnit.

Architecture

PyUnit’s architecture is simple and effective. Tests are implemented by inheritance
from a base class, TestCase, which supports test fixture behavior. Tests may be aggre-
gated using a TestSuite. A number of test assert methods are provided. The PyUnit
module, unittest.py, not only contains the foundation code for building unit tests,
but also acts as a test runner to execute tests from the command line. A GUI test run-
ner is also provided.

Usage

Test classes are created by subclassing TestCase. The simplest approach is to over-
ride the method runTest (), as shown in Example 9-1.

88

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 9-1. Simple unit test for the class Book

booktests.py

"""Unit test for book.py"""
import book

import unittest

class BookTests(unittest.TestCase):

def runTest(self):
"""Test book creation
book1 = book.Book("Cosmos", "Carl Sagan")
self.assertEqual("Cosmos", booki.title)

This example creates the test class BookTests. The test method runTest() creates a
Book and uses the assertEqual() test assert method to verify its attributes. Test meth-
ods customarily contain a label similar to the example’s Test book creation. This
test description is printed if the test fails.

The class Book tested by BookTests is given in Example 9-2.

Example 9-2. Simple unit test for the class Book
book.py
class Book:

title = ""
author = ""

def __init__(self, title, author):
self.title = title
self.author = author

Unit tests may be run from the command line using unittests.py as a test runner.
The argument specifies the Python module name, class name, and method name of
the test to run. Example 9-3 demonstrates running BookTests this way and shows the
result.

Example 9-3. Results of running BookTests
$ python unittest.py booktests.BookTests.runTest

Ran 1 test in 0.000s

OK

For this command to work as shown, the module unittests.py must be present in
the Python search path specified by the environment variable $PYTHONPATH.

Usage | 89

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Making BookTests fail by changing the test assert statement to self.assertEqual
("Bad", booki.title) demonstrates PyUnit’s test failure reporting, as shown in
Example 9-4.

Example 9-4. BookTests failure
$ python unittest.py booktests.BookTests.runTest

Traceback (most recent call last):
File "/cygdrive/c/work/UnitTestFrameworks/Python/examplel/booktests.py", line 11, in
runTest
self.assertEqual("Bad", booki.title)
File "/cygdrive/c/work/UnitTestFrameworks/Python/examplel/unittest.py", line 302, in

failUnlessEqual
raise self.failureException, \
AssertionError: 'Bad' != 'Cosmos'

Ran 1 test in 0.000s

FAILED (failures=1)

The failure report includes the test description Test book creation, as well as the
specific assert condition that failed.

Rather than overriding runTest(), it is far more common to create uniquely named
test methods. This allows building test classes with multiple test methods.
Example 9-5 shows BookTests redesigned this way.

Example 9-5. Redesigned BookTest

booktests.py

"""Unit test for book.py"""
import book

import unittest

class BookTests(unittest.TestCase):

def testCreateBook(self):
"""Test book creation
book1 = book.Book("Cosmos", "Carl Sagan")
self.assertEqual("Cosmos", booki.title)

nnn

if _name__ == '_main__
unittest.main()

The additional two lines of code at the end allow the test to be run directly without
using unittest.py, as shown in Example 9-6. All methods that have names starting
with test are found and run.

90 | Chapter9: PyUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 9-6. Running BookTest directly
$ python booktests.py

Ran 1 test in 0.000s

0K

With this approach, multiple test methods can be added to a test class. If they share
objects, test fixture behavior should be implemented using the setUp() and
tearDown() methods. Example 9-7 shows the test fixture LibraryTests.

Example 9-7. . The test class LibraryTests

librarytests.py

"""Unit test for library.py"""
import book

import library

import unittest

class LibraryTests(unittest.TestCase):

def setUp(self):
self.library = library.Library()
book1 = book.Book("Cosmos", "Carl Sagan")
self.library.addBook(book1)
book2 = book.Book("Contact", "Carl Sagan")
self.library.addBook(book2)

def tearDown(self):
self.library.dispose()

def testGetNumBooks (self):
"""Test getting number of books
self.assert_(self.library.getNumBooks()==2)

nnn

def testGetBook(self):
"""Test getting a book from library
book2 = self.library.getBook("Cosmos")
self.assertNotEqual(None, book2, "Book not found")

nun

The setUp() method creates a Library and adds two Books to it, and tearDown() dis-
poses of the Library. The test method testGetNumBooks() uses the test assert method
assert (') to check the library’s size. This is the most generic type of test assert, as it
simply checks whether its argument evaluates to true.

Example 9-8 shows the Library class that is tested by LibraryTest.

Example 9-8. The Library class

library.py
class NonexistentBookError(Exception):

Usage | 91

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 9-8. The Library class (continued)

Exception thrown for missing book"""
pass

class Library:
" 1ibrary"""

def __init__(self):
self. books = dict()

def dispose(self):
self. books.clear()

def addBook(self, book):
"iadd 3 book"""
self. books[book.title] = book

def getBook(self, title):
"""Find a book by title"""
return self. books.get(title)

def removeBook(self, title):
"""Remove a book"""
if self. books.has key(title):
self. books.pop(title)
else:
raise NonexistentBookError

def getNumBooks(self):
"""Get number of books
return len(self. books)

nnn

Library uses the Python dictionary object dict() to contain a collection of Books.
The module library.py also defines the exception class NonexistentBookError. This
type of exception is thrown by the method removeBook() if it cannot find the Book to
remove.

The failUnlessRaises() test assert method can be used to check for expected excep-
tion behavior, as shown in Example 9-9.

Example 9-9. Testing for an expected exception

librarytests.py
def testRemoveNonexistentBook(self):
"""Test expected exception from removing a nonexistent book"""
self.failUnlessRaises(library.NonexistentBookError,
self.library.removeBook, "Nonexistent")

The arguments passed to failUnlessRaises() are an exception type, a callable
object, and a variable argument list. In this example, the exception type is
NonexistentBookError and the callable object is the function removeBook(). The

92 | Chapter9: PyUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

object is called with the specified argument list. If an exception of the given excep-
tion type is thrown, the test passes. If no exception is thrown, or some other type of
error occurs, the test fails.

Multiple tests may be aggregated using TestSuite. Example 9-10 adds a function
named suite() to create a TestSuite containing LibraryTest’s test methods and
changes the call to run the suite to unittest.main().

Example 9-10. Creating and running a TestSuite

librarytests.py

def suite():
suite = unittest.TestSuite()
suite.addTest(LibraryTests("testGetNumBooks"))
suite.addTest(LibraryTests("testGetBook"))
suite.addTest(LibraryTests("testRemoveNonexistentBook"))
return suite

if __name_ =="' main__
unittest.main(defaultTest="suite")

Tests are added to a TestSuite using its addTest() method. It also has an addTests()
method that allows multiple tests to be added at once.

PyUnit provides a convenience method, makeSuite(), which creates a TestSuite. It
finds all methods named with a given prefix, such as test, and returns a suite con-
taining them. Example 9-11 demonstrates makeSuite().

Example 9-11. . Using makeSuite() to create a TestSuite

librarytests.py

def suite():
suite = unittest.makeSuite(LibraryTests, "test")
return suite

It’s often useful to create a module that builds TestSuite containing all the tests in
each test class. Example 9-12 shows such a module, named alltests.py.

Example 9-12. Module to run all tests

alltests.py
import unittest

def suite():
modules to test = ('booktests', 'librarytests')
alltests = unittest.TestSuite()
for module in map(__import , modules to test):

alltests.addTest(unittest.findTestCases(module))

return alltests

if _name_ == "' main__
unittest.main(defaultTest="suite")

Usage | 93

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

This example creates and runs a TestSuite named alltests that contains all the tests
from booktests.py and librarytests.py.

Python includes a command-line interpreter for interactively running code. PyUnit
tests can be run this way. Example 9-13 demonstrates using the interpreter to create
and run a unit test.

Example 9-13. Running a test interactively

$ python

>>> import unittest

>>> import librarytests

>>> runner = unittest.TextTestRunner()

>>> test = librarytests.LibraryTests("testGetBook")
>>> runner.run(test)

Ran 1 test in 0.000s

OK
<unittest. TextTestResult run=1 errors=0 failures=0>

In this example, the modules unittest and librarytests are imported and a
TextTestRunner is created. Next, a test containing the test method testGetBook() is
created and run using the test runner.

A TestSuite can be created and run similarly, as shown in Example 9-14.

Example 9-14. Creating a TestSuite interactively

>>> suite = unittest.makeSuite(librarytests.LibraryTests, 'test")
>>> runner.run(suite)

Ran 5 tests in 0.001s

0K
<unittest. TextTestResult run=5 errors=0 failures=0>

Example 9-15 illustrates creating a test from BookTests and adding it to the
TestSuite.

Example 9-15. Adding a test to the test suite

>>> import booktests

>>> test2 = booktests.BookTests("testCreateBook™")
>>> suite.addTest(test2)

>>> runner.run(suite)

Ran 6 tests in 0.001s

0K
<unittest. TextTestResult run=6 errors=0 failures=0>

94 | Chapter9: PyUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The PyUnit GUI is implemented in the module unittestgui.py. It is not included
with the standard Python libraries but is available in downloads from the PyUnit web
site. It acts as a test runner, running test modules, classes, and methods, and dis-
plays a friendly green or red test results indicator, as well as failure details. It is
shown in Figure 9-1.

ZiPyunit R la] .Y
Enter test name: |Iihraryteat3 Start |

Progress:

100%

Run: & Faillures: 0 Emors 0 Remaining: 0

Failurez and errors:

=

Help
About

;I Cloze

Idle

Figure 9-1. The PyUnit GUI

The name of the test to run is entered at the top. The name can specify a module
(e.g., librarytests), a test class (librarytests.LibraryTests), or a test method
(librarytests.LibraryTests.testGetBook). Except when a specific test method
name is specified, all the methods in the module or class being tested that have
names starting with test are run.

Test Assert Methods

PyUnit provides 18 test assert methods. Many of them are aliases for the same meth-
ods. Most take an optional descriptive message argument, which is reported in case
of test failure.

The test assert methods are defined within the class TestCase and are described in the
following list. Their first argument, self, is a reference to the TestCase instance.
When invoking these methods within a test method, this argument is implicit and
does not need to be passed.

assert (self, expr, msg=None)
failUnless(self, expr, msg=None)
Test passes if expr is true. This is the most generic assert method.

Test Assert Methods | 95

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

assertEqual(self, first, second, msg=None)
assertEquals(self, first, second, msg=None)
failUnlessEqual(self, first, second, msg=None)
Test passes if first and second are equal when compared using ==.

assertNotEqual(self, first, second, msg=None)
assertNotEquals(self, first, second, msg=None)
faillfEqual(self, first, second, msg=None)

Test fails if first and second are equal when compared using ==.

assertAlmostEqual(self, first, second, places=7, msg=None)
assertAlmostEquals(self, first, second, places=7, msg=None)
failUnlessAlmostEqual(self, first, second, places=7, msg=None)
Test passes if first and second are equal after being rounded to places decimal
places.

assertNotAlmostEqual(self, first, second, places=7, msg=None)
assertNotAlmostEquals(self, first, second, places=7, msg=None)
failIfAlmostEqual(self, first, second, places=7, msg=None)
Test fails if first and second are equal after being rounded to places decimal
places.

assertRaises(self, excClass, callableObj, *args, **kwargs)
failUnlessRaises(self, excClass, callableObj, *args, **kwargs)
Call callableObj with arguments args and keyword arguments kwargs. This
assert passes if an exception of type excClass is thrown.
fail(self, msg=None)
Test assert that always fails.
failIf(self, expr, msg=None)
Test fails if expr is true.

96 | Chapter9: PyUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 10
XMLUnit

Overview

XMLUnit provides useful support for unit testing of XML content. It is an extension
to JUnit and NUnit, rather than a standalone framework.

Development and testing of software that generates XML content are common activi-
ties. Writing such tests is difficult with generic unit test frameworks. XML tests often
compare expected XML content to actual XML content generated by the software
that is being tested. Such tests can be written by doing a string comparison between
the expected and actual XML content strings. However, what if the actual XML con-
tent contains a return character for readability, or puts XML attributes in opposite
order than they appear in the expected XML string? Taken as XML documents, the
two XML strings have the same contents, but an exact string comparison will fail.

To further illustrate the problem, the following pieces of XML represent an element
named book containing the child elements title and author. Since the child elements
are not in the same order, these XML elements have equivalent content, but differ-
ent syntax:

<book> <title>Dune</title> <author>Frank Herbert</author> </book>

<book> <author>Frank Herbert</author> <title>Dune</title> </book>
The following representations of an empty XML element named library also have
equal content but different syntax:

<library> </library>

<library/>
It is clearly useful to be able to test that two pieces of XML have the same content
despite differences in format.

Other common test cases include verifying XML document validity and extracting
the value of a particular node in a document, both of which involve writing a lot of
code when building upon the generic xUnit test assert methods.

97

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Thus, it is very useful to add knowledge of XML content, parsing, and validity to a
unit test framework. XMLUnit addresses this need with a set of functional and pow-
erful tests for XML content.

XMLUnit is open source software authored by Tim Bacon and Jeff Martin. It is
released under a BSD license that freely allows redistribution and use of the source
and binary code in both original and modified versions, as long as the original copy-
right notice is included. See the license file included with XMLUnit for full details.

For more information about XMLUnit, see http://xmlunit.sourceforge.net. The infor-
mation in this chapter is based on XMLUnit for Java 1.0. The NUnit version,
XMLUnit .Net 0.3, is very similar but is at an earlier stage of development.

Architecture

XMLUnit is implemented as a number of classes built upon the foundation provided
by JUnit (or NUnit.) Tests are implemented by inheritance from a base class,
XMLTestCase, which is derived from TestCase. The tests may use XML-specific test
assert methods from the class XMLAssert.

Java can process XML using any classes compliant with the Java API for XML Pro-
cessing (JAXP) specification. System properties can be set to name the parser classes
to use, as shown here:

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",

"org.apache.xerces. jaxp.DocumentBuilderFactoryImpl");

System.setProperty("javax.xml.parsers.SAXParserFactory",
"org.apache.xerces. jaxp.SAXParserFactoryImpl");

These calls tell Java to use the Xerces XML parser and document builder.

For XPath and XSL operations, Java can use any XML transformation class that is
compliant with the Transformation API for XML (TrAX). Another system property
names the transformation class to use:

System.setProperty("javax.xml.transform.TransformerFactory"”,
"org.apache.xalan.processor.TransformerFactoryImpl");

This call causes the Xalan transformation engine to be used for XML transforma-
tions.

If these properties are not set, the default JAXP parser settings are used. The Apache
Crimson XML parser currently ships with Java. Crimson implements neither the
World Wide Web Consortium (W3C) DocumentTraversal interface nor the JAXP
javax.xml.transform hierarchy. So, it’s necessary to use alternative XML tools such
as Xerces and Xalan to write XMLUnit tests that do XML transformations or XML
tree-walking using DocumentTraversal.

98 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Usage

A basic XMLUnit test verifies that two XML strings are equivalent using the assert
method assertXMLEqual(). The test class is derived from XMLTestCase, which also
gives it access to the functionality of the base JUnit class TestCase. Example 10-1
illustrates such a test.

Example 10-1. Testing for equivalent XML content

XMLElementTest.java
import org.custommonkey.xmlunit.*;

public class XMLElementTest extends XMLTestCase {

public void testEmptyElement() throws Exception {
XMLElement element = new XMLElement("test");
String expected = "<test></test>";
assertXMLEqual(expected, element.toString());

}
}

This example creates the test class XMLElementTest to test the class XMLElement. The
test method testEmptyElement() creates an XMLElement named test and uses the
assertXMLEqual() test assert method to verify its contents. Since the assert method
may throw an Exception, the test method declaration also states that an Exception
may be thrown. If the Exception is thrown, the unit test framework will catch the
Exception and indicate that the test resulted in an error.

The tested class XMLElement is given in Example 10-2. It represents an XML element.

Example 10-2. The class XMLElement
XMLElement.java

public class XMLElement {
private String name;

XMLElement(String n) {
name = n;

}

public String toString() {

}

return "<"+name+"/>";

}

This initial version of XMLELement only knows how to represent an empty element. Its
toString() method returns the XML string <test/>. Since assertXMLEquals() tests
for syntactical equivalence, not literal string equivalence, comparing this string to the
expected value <test></test> succeeds. Both strings are valid XML representations
of an empty element named test.

Usage | 99

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

A test can also verify that two XML strings are literally identical. All XMLUnit com-
parison tests use the class Diff to compare XML strings. The assertXMLEquals()
method creates an instance of Diff and calls its method similar () to check if the two
strings are equivalent. To test for identical XML strings, a Diff is created and passed
to assertXMLIdentical(), as shown in Example 10-3.

Example 10-3. Testing for identical XML content

XMLElementTest.java
public void testEmptyElementIdentical() throws Exception {
XMLElement element = new XMLElement("test");
String expected = "<test/>";
Diff diff = new Diff(expected, element.toString());
assertXMLIdentical(diff, true);
}

The second argument to assertXMLIdentical(), the Boolean TRUE, indicates that the
test should pass if the XML strings are identical. Passing FALSE indicates that the test
should pass if the strings are not identical.

An XML element can have both text content and child elements. Example 10-4 dem-
onstrates unit tests for adding contents and children to XMLElement.

Example 10-4. Test adding content and children to XMLElement

XMLElementTest. java
public void testContent() throws Exception {
XMLElement element = new XMLElement("test", "content");
String expected = "<test>content</test>";
assertXMLEqual(expected, element.toString());
}

public void testAddChildren() throws Exception {
XMLElement element = new XMLElement("test");
XMLElement child = new XMLElement("child", "content");
XMLElement child2 = new XMLElement("child2", "content2");
element.addChild(child);
element.addChild(child2);
String expected =
"<test><child>content</child><child2>content2</child2></test>";
assertXMLEqual(expected, element.toString());

}

Again, assertXMLEqual() is used to verify the XML produced by XMLElement. The
new behaviors being tested are the generation of XML for an element with text con-
tent and for an element with two children, each with their own text content.

Example 10-5 implements XMLElement to support adding text content and children to
an element.

100 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 10-5. Version of XMLElement supporting text content and child elements

XMLElement.java
import java.util.*;

public class XMLElement {

private String name;
private String content;
private Vector children;
XMLElement(String n) {

name = n;
content = "";
children = new Vector();

}

XMLElement(String n, String c) {
name = n;
content = c;
children = new Vector();

}

public void addChild(XMLElement child) {
children.addElement(child);

}

public String toString() {
if (content.length() == 0 & children.size() == 0)

n,n

return "<"+name+"/>";
else {
String result = "<"+name+">"+content;
for (Enumeration e = children.elements();
e.hasMoreElements();) {
XMLElement element = (XMLElement)e.nextElement();
result += element.toString();

} non

result += "</"+name+">";
return result;

}
}

A new XMLElement constructor allows content to be specified when an element is cre-
ated. The method addChild() allows child elements to be added.

Testing individual XML elements is relatively easy. When it is necessary to unit test
entire XML documents, XMLUnit really shows its usefulness. It supports building
tests that compare and validate documents, as well as extracting and validating a
document’s nodes. With this test support, the task of building a custom XML docu-
ment format becomes well-suited to test driven development methods. It makes
sense to first test and build the functionality to write an empty document and then,
as elements and attributes are added to the document format, to write additional
tests for them.

Usage | 101

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The design of an XML document format is codified in a Document Type Definition
(DTD). A DTD contains the specification for a particular document type in terms of
both the elements it may contain and the contents of those elements. Elements may
contain attributes, text contents, and child elements. An XML document may con-
tain its own DTD as part of its header information, or it may contain a reference to
another file where the DTD is found. It is a matter of personal choice whether you
write unit tests that specifically test the contents of the DTD. Regardless of whether
the DTD itself is tested, its validity is indirectly verified by unit tests that check the
validity of XML documents that use it.

The most basic XMLUnit test to verify a document is assertXMLValid(). It takes an
XML document represented as a string, parses it, and fails if there are any errors.
Example 10-6 demonstrates validation of an XML document using this assertion.

Example 10-6. Test using assertXMLValid to validate an XML document

LibraryXMLDocTest. java
import org.custommonkey.xmlunit.*;

public class LibraryXMLDocTest extends XMLTestCase {

public void testValid() throws Exception {
Library library = new Library();
LibraryXMLDoc doc = new LibraryXMLDoc(library);
assertXMLValid(doc.toString());

}
}

This test creates an instance of the new class LibraryXMLDoc and tests the validity of
the XML document created by its toString() method. To pass the assertxMLValid()
test, an XML document must contain a DOCTYPE definition, a DTD defining an ele-
ment type, and a root element. Example 10-7 shows the simplest implementation of
LibraryXMLDoc that will pass this test.

Example 10-7. Simple version of LibraryXMLDoc to produce a valid XML document

LibraryXMLDoc. java
public class LibraryXMLDoc {

public String toString() {
return "<!DOCTYPE library ["
+ "<!ELEMENT library (#PCDATA) >]>"
+ "<library/>";
}
}

The XML document produced contains a DTD specifying the DOCTYPE library
and an element type also named library. It contains one empty library element as
well.

102 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Since a Library contains Books, the LibraryXMLDoc DTD logically specifies a root
library element containing book elements. A book element has child title and author
elements.

Example 10-8 shows the DTD for the library XML document implemented by
LibraryXMLDoc.

Example 10-8. The library document DTD

<IDOCTYPE library [
<VELEMENT library (book*) >
<!ELEMENT book (title,author) >
<IELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA) >

1>

This DTD specifies a document format in which a 1ibrary element contains zero or
more book elements, a book contains title and author elements, and the title and
author elements contain character data.

Example 10-9 shows a unit test for an XML document that is compliant with this
DTD. The document should contain a library element, which contains a book ele-
ment. This in turn contains title and author elements. At this point, it also makes
sense to refactor LibraryXMLDocTest into a fixture to reduce code duplication between
tests.

Example 10-9. Testing the library, book, title, and author elements

LibraryXMLDocTest. java

import java.io.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import org.xml.sax.InputSource;
import org.custommonkey.xmlunit.*;

public class LibraryXMLDocTest extends XMLTestCase {

private Library library;
private DocumentBuilder builder;

public void setUp() throws Exception {
library = new Library();
DocumentBuilderFactory builderFactory =
DocumentBuilderFactory.newInstance();
builder = builderFactory.newDocumentBuilder();

}

public void testReadDocOneBook() throws Exception {
library.addBook(new Book("On the Road", "Jack Kerouac"));
LibraryXMLDoc doc = new LibraryXMLDoc(library);
InputSource in =
new InputSource(new StringReader(doc.toString()));

Usage | 103

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 10-9. Testing the library, book, title, and author elements (continued)

Document response = builder.parse(in);

NodeList books = response.getElementsByTagName("book");
assertEquals(1, books.getlLength());

Node bookNode = books.item(0);

Node titleNode = bookNode.getFirstChild();

Text titleText = (Text)titleNode.getFirstChild();

Node authorNode = bookNode.getlastChild();

Text authorText = (Text)authorNode.getFirstChild();
assertEquals("On the Road", titleText.getData());
assertEquals("Jack Kerouac", authorText.getData());

}
}

The test method testReadDocOneBook() relies on several external objects to parse the
XML document. These include a javax.xml.parsers.DocumentBuilder parser and
Document, NodeList, Node, and Text objects to contain the parsed XML entities. Using
these constructs, the test obtains the book, title, and author elements, and verifies
the title and author text contents.

For the implementation of LibraryXMLDoc to pass these tests, see the end of this sec-
tion.

The previous example parses a document and extracts individual node values. To
avoid tedious repetitions of this kind of code, XMLUnit offers support for automati-
cally walking the XML node tree with the NodeTest class and the NodeTester inter-
face. Using this feature requires using an XML implementation that supports the
DocumentTraversal interface, such as the Xerces parser.

Example 10-10 shows a unit test that uses NodeTest and NodeTester to walk the tree
and check the element names and text content values.

Example 10-10. Walking the tree to test node values

LibraryXMLDocTest. java
public void testWalkTree() throws Exception {

XMLUnit.setControlParser(
"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

library.addBook(new Book("title1", "authori"));

library.addBook(new Book("title2", "author2"));

LibraryXMLDoc doc3 = new LibraryXMLDoc(library);

String testDoc = doc3.toString();

NodeTest nodeTest = new NodeTest(testDoc);

assertNodeTestPasses(nodeTest, new LibraryNodeTester(),
new short[] {Node.TEXT NODE, Node.ELEMENT NODE}, true);

}
private class LibraryNodeTester extends AbstractNodeTester {

private String currName = "";

public void testText(Text text) throws NodeTestException {

104 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example 10-10. Walking the tree to test node values (continued)

String txt = text.getData();
System.out.println("text="+txt);
if ((currName.equals("title")
8& txt.substring(0,5).equals("title"))
|| (currName.equals("author")
88 txt.substring(0,6).equals("author")))
return;
throw new NodeTestException("Incorrect text value", text);

}

public void testElement(Element element)
throws NodeTestException {
String name = element.getlLocalName();
System.out.println("name="+name);
if (Iname.equals("library") 88 !name.equals("book")
8& !name.equals("title") 8& !name.equals("author"))
throw new NodeTestException("Unexpected name", element);
if (name.equals("title") || name.equals("author"))
currName = name;

}

public void noMoreNodes(NodeTest nodeTest)
throws NodeTestException {}

}

The test method is named testWalkTree(). It first calls setControlParser() to use the
Xerces parser. Next, it adds two Books to the Library and creates a LibraryXMLDoc. An
instance of NodeTest is created with the XML document string as its argument. The
assert method assertNodeTestPasses() 1is called. This method takes an
AbstractNodeTester as an argument, along with an array of Node types telling it which
XML nodes to test.

The rest of the example is a custom AbstractNodeTester class named
LibraryNodeTester that performs the actual testing of Node values. The method
testElement() receives Element objects and the method testText() receives Text
objects. In this example, the Elements are tested to verify they are either named
library, book, title, or author, and the Text objects are tested to verify they contain
the string title or author.

The following output from running the test demonstrates how it works. The
NodeTest object traverses the document tree and passes all of the elements and text
contents to LibraryNodeTester:

$ java junit.textui.TestRunner LibraryXMLDocTest
.name=library

name=book

name=title

text=title2

name=author

text=author2

Usage | 105

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

name=book
name=title
text=title1
name=author
text=authori

A useful addition to the XML specification is the XML Path Language, known as
XPath. It allows XML documents to be queried and manipulated using a URL-like
path notation. XMLUnit offers a number of test assert methods that verify the results
of XPath statements. Example 10-11 shows a unit test that creates XPath expres-
sions to find book elements in a library XML document, and compares their results.

Example 10-11. Testing XPath expressions

LibraryXMLDocTest. java
public void testXpath() throws Exception {
library.addBook(new Book("On the Road", "Jack Kerouac"));
library.addBook(new Book("Dune", "Frank Herbert"));
LibraryXMLDoc doc = new LibraryXMLDoc(library);
String xmlTest = doc.toString();
assertXpathExists("//book[title="Dune']", xmlTest);
assertXpathExists("//book[author="Jack Kerouac']", xmlTest);
assertXpathNotExists("//book[author="Nobody']", xmlTest);
assertXpathsEqual("//book[title="Dune']",
"//book[author="Frank Herbert']", xmlTest);
assertXpathsNotEqual("//book[title="Dune']",
"//book[title="0On the Road']", xmlTest);
}

This test creates XPath expressions to query book elements by title and author, and
verifies that the books are found using assertXpathExists(). It also verifies whether
two XPath expressions return the same element using the assert methods
assertXpathskqual() and assertXpathsNotEqual().

For more details on XPath, see the official W3C XPath Recommendation at http://
www.w3.0rg/TR/xpath.

Test Assert Methods

The descriptions in the following list are based on the Javadocs for the class
XMLTestCase, which contains all of the following test assert methods. The test assert
methods use the classes Diff, Validator, NodeTest, and NodeTester from the package
org.custommonkey.xmlunit. They also use the interface org.w3c.dom.Document and the
class java.io.Reader. The fully qualified package names for these classes are omitted
here. Most of the assert methods have variants that perform a given test on either a
DOM Document or String representation of XML content.

106 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

assertNodeTestPasses(NodeTest test, NodeTester tester, short[] nodeTypes,
boolean assertion)
Executes a NodeTest using a NodeTester for the specified node types. Assert
passes if NodeTest passes and assertion is TRUE, or if NodeTest fails and assertion is
FALSE.

assertNodeTestPasses(String xmlString, NodeTester tester, short nodeType)
Executes a NodeTest using a NodeTester for a single node type and asserts that it
passes.

assertXMLEqual(Diff diff, boolean assertion)
assertXMLEqual(String msg, Diff diff, boolean assertion)
Assert that the result of an XML comparison is or is not similar.

assertXMLEqual(Document control, Document test)

assertXMLEqual(String err, Document control, Document test)

assertXMLEqual(Reader control, Reader test)

assertXMLEqual(String err, Reader control, Reader test)

assertXMLEqual(String control, String test)

assertXMLEqual(String err,String control, String test)
Assert that two XML documents are similar.

assertXMLIdentical (Diff diff, boolean assertion)
assertXMLIdentical(String msg, Diff diff, boolean assertion)
Assert that the result of an XML comparison is or is not identical.

assertXMLNotEqual(Document control, Document test)

assertXMLNotEqual(String err, Document control, Document test)

assertXMLNotEqual(Reader control, Reader test)

assertXMLNotEqual(String err, Reader control, Reader test)

assertXMLNotEqual(String control, String test)

assertXMLNotEqual(String err, String control, String test)
Assert that two XML documents are not similar.

assertXMLValid(String xmlString)
Asserts that xm1String contains valid XML. To pass, it must contain a DOCTYPE
declaration, a DTD defining an element type, and at least one root element.

assertXMLValid(String xmlString, String systemId)
Asserts that xm1String contains valid XML. To pass, it must contain a DOCTYPE
declaration and a root element. The test uses systemld to obtain the DTD.

assertXMLValid(String xmlString, String systemId, String doctype)
Asserts that xmlString contains valid XML. The XML string will be validated
with the doctype and systemId specified, regardless of whether it already con-
tains a DOCTYPE declaration.

assertXMLValid(Validator validator)
Asserts that an instance of org.custommonkey.xmlunit. Validator returns
isvalid() == true.

Test Assert Methods | 107

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

assertXpathEvaluatesTo(String expectedValue, String xpathExpression, Document
inDocument)
assertXpathEvaluatesTo(String expectedValue, String xpathExpression, String
inXMLString)
Assert the value of an Xpath expression in a DOM Document or XML String.

assertXpathExists(String xPathExpression, Document inDocument)
assertXpathExists(String xPathExpression, String inXMLString)
Assert that a specific XPath exists in a DOM Document or XML String.

assertXpathNotExists(String xPathExpression, Document inDocument)
assertXpathNotExists(String xPathExpression, String inXMLString)
Assert that a specific XPath does not exist in a DOM Document or XML String.

assertXpathsEqual(String controlXpath, Document controlDocument, String
testXpath, Document testDocument)
assertXpathsEqual(String controlXpath, String inControlXMLString, String
testXpath, String inTestXMLString)
Assert that the node lists of two XPaths in two DOM Documents or XML strings
are equal.

assertXpathsEqual(String controlXpath, String testXpath, Document document)

assertXpathsEqual(String controlXpath, String testXpath, String inXMLString)
Assert that the node lists of two XPaths in the same DOM Document or XML
string are equal.

assertXpathsNotEqual(String controlXpath, Document controlDocument, String
testXpath, Document testDocument)
assertXpathsNotEqual(String controlXpath, String inControlXMLString, String
testXpath, String inTestXMLString)
Assert that the node lists of two XPaths in two DOM Documents or XML strings
are not equal.

assertXpathsNotEqual(String controlXpath, String testXpath, Document document)
assertXpathsNotEqual(String controlXpath, String testXpath, String
inXMLString)
Assert that the node lists of two XPaths in the same DOM Document or XML
string are not equal.

assertXpathValuesEqual(String controlXpath, Document controlDocument, String
testXpath, Document testDocument)

assertXpathValuesEqual(String controlXpath, String inControlXMLString, String
testXpath, String inTestXMLString)
Assert that the evaluation of two XPaths in two DOM Documents or XML
strings are equal.

108 | Chapter10: XMLUnit

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

assertXpathValuesEqual(String controlXpath, String testXpath, Document
document)
assertXpathValuesEqual(String controlXpath, String testXpath, String
inXMLString)
Assert that the evaluation of two XPaths in the same DOM Document or XML
string are equal.

assertXpathValuesNotEqual(String controlXpath, Document controlDocument,
String testXpath, Document testDocument)
assertXpathValuesNotEqual(String controlXpath, String inControlXMLString,
String testXpath, String inTestXMLString)
Assert that the evaluation of two XPaths in two DOM Documents or XML
strings are not equal.

assertXpathValuesNotEqual(String controlXpath, String testXpath, Document
document)
assertXpathValuesNotEqual(String controlXpath, String testXpath, String
inXMLString)
Assert that the evaluation of two XPaths in the same DOM Document or XML
string are not equal.

Test Assert Methods | 109

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 11
Resources

Unit testing is a constantly evolving technology, as are unit testing tools. This sec-
tion lists some of the most useful written and electronic resources for learning more
about unit testing and for keeping up with new developments.

Web Sites

The best source of up to date information about unit testing and tools is the Inter-
net. Hundreds of sites exist, offering test tool downloads, tutorials, forums, articles,
and examples. Several of the most prominent sites are described in the following list:

http://lwww.xprogramming.com
This site is a great resource for information about Extreme Programming. The
Downloads page includes links to virtually every unit test framework and test-
ing-related tool in existence. This is the first place to look for a test framework
for a particular language or domain.

http://'www.junit.org
This is the home of the JUnit test framework. It is also a useful resource for other
xUnits. It’s the place to download JUnit and its extensions, learn how to use
them, and read news and articles about new developments.

http://www.testdriven.com
This site offers a continuous flow of current TDD-related information, including
news, articles, book excerpts, and forums.

http://lwww.extremeprogramming.org
This site offers a well-organized introduction to XP, unit testing, and related
topics.

http://'www.agilealliance.com
This site is a hub for the Agile Development movement, offering an introduction
to agile, news, articles, an index of local user groups, and more.

110

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://'www.sourceforge.net
SourceForge.net is the home of thousands of open source software projects,
including many unit testing and test-related tools. Most of these projects are
found under the topic SoftwareDevelopment: Build Tools.

http://cppunit.sourceforge.net
This is the home of CppUnit.

http://pyunit.sourceforge.net
The home of PyUnit.

http://xmlunit.sourceforge.net
The home of XMLUnit.

http://'www.nunit.org
This site is the home of NUnit.

http:/lwww.oreilly.com
O’Reilly’s site is a trove of technical information about unit testing and many
other software development topics, offering articles, weblogs, conferences, and
(of course) books.

Discussion Groups

There’s a great deal of ongoing discussion about Agile Development and unit test-
ing, since they are relatively new developments in the world of software. Online dis-
cussion groups are great places to learn more, get involved, and get advice about
these technologies. A few of the thousands of active groups are listed here. Beyond
these, it is not hard to find discussion groups dedicated to particular xUnits.

testdrivendevelopment
A Yahoo! group is dedicated to discussion of TDD and unit testing. Have a
tricky unit testing problem? Want to listen in when unit test gurus discuss the
finer points of the technology? Join this group. Find it at http://groups.yahoo.
com/groupl/testdrivendevelopment/.

extremeprogramming
A very active Yahoo! group dedicated to Extreme Programming. This is located
at http://groups.yahoo.com/group/extremeprogramming]/.

refactoring
Another Yahoo! group, this one oriented towards refactoring and related topics.
It is located at http://groups.yahoo.com/group/refactoring/.

JUnit
Another Yahoo! Group, this one is centered on JUnit specifically. It is located at:
http://groups.yahoo.com/group/junit/.

Discussion Groups | 111

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Books

Numerous books have been published about Agile Development, unit testing, and
specific unit test frameworks. A few of them are listed here:

* Test Driven Development: A Practical Guide, by David Astels (Prentice Hall)

* Test Driven Development: By Example, by Kent Beck (Addison-Wesley)

* Test-Driven Development in Microsoft .Net, by James A. Newkirk and Alexei
Vorontsov (Microsoft Press)

* Testing Extreme Programming, by Lisa Crispin (Addison-Wesley)

* Pragmatic Unit Testing in C# with NUnit, by Andy Hunt and Dave Thomas (The
Pragmatic Programmers)

* Pragmatic Unit Testing in Java with JUnit, by Andy Hunt and Dave Thomas (The
Pragmatic Programmers)

* Unit Testing in Java—How Tests Drive the Code, by Johannes Link (Morgan
Kaufmann)

* Agile Software Development: Principles, Patterns, and Practices, by Robert Mar-
tin (Prentice Hall)

JUnit in Action, by Vincent Massol and Ted Husted (Manning Publications)

112 | Chapter11: Resources

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

APPENDIX A
Simple C++ Unit Test Framework

This appendix contains the C++ version of the simple unit test framework example
from Chapter 2. The software architecture of the C++ version is identical to that of
the Java version. The only variations are those dictated by the differences in lan-
guage syntax.

The full description of the example is found in Chapter 2. This appendix simply
describes how to build and run the C++ version. It assumes that you are using the
GNU g++ compiler. Most other C++ compilers should work as well, but the compi-
lation commands may vary from what is shown here.

Example 1: Create a Book

The first example creates the class Book. En route, the unit test framework is built
and the first unit test written.

Step 0: Set Up the Unit Test Framework

The framework initially is built on a single class, UnitTest, shown in Figure A-1. The
source code for UnitTest includes a header file, UnitTest.h, and an implementation
file, UnitTest.cpp, as shown in Example A-1.

Unit Test

runTest()
assertTrue()

int num_test_success

Figure A-1. The class UnitTest

13

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example A-1. The class UnitTest

UnitTest.h
#define UT_ASSERT(condition) \
assertTrue(condition, FILE_, LINE__,#condition)

class UnitTest {
public:

virtual ~UnitTest() {}
virtual void runTest() = 0;

protected:

void assertTrue(bool condition, const char *file,
int line, const char *msg);
static int num_test_success;

};

UnitTest.cpp
#include <stdio.h>
#tinclude <stdlib.h>
#include "UnitTest.h"

int UnitTest::num_test_success = 0;

void UnitTest::assertTrue(bool condition,
const char *file, int line,
const char *msg) {
if (!(condition)) {
printf("FAILURE!\n");
printf("%s:%d:%s\n", file, line, msg);
exit(1);
}

++num_test success;

}

UnitTest is an abstract class because it contains the pure virtual function runTest().
Actual unit tests will be inherited from UnitTest and must override the runTest()
method. The function assertTrue() should be used to test Boolean conditions in
runTest(). If the condition is TRUE, the counter num_test success is incremented. If it
is FALSE, the function test_failure() is called. This function reports the file location
of the failure and exits. The macro UT_ASSERT(') is used in place of direct calls to
assertTrue(). It uses the preprocessor directives FILE__and _LINE__ to fill in the
location of the call at compilation, and the #condition argument allows the condi-
tional expression to be printed in the failure report.

Compile UnitTest with the command g++ -c UnitTest.cpp (or your compiler’s equiv-
alent command).

114 | AppendixA: Simple C++ Unit Test Framework

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Step 1: Create a Unit Test

Start by creating the unit test class BookTest, as shown in Example A-2.

Example A-2. The definition of the class BookTest

BookTest.h
#include "UnitTest.h"
#include "Book.h"

class BookTest : public UnitTest {
public:

void runTest() {
Book book("Cosmos");
UT_ASSERT(!strcmp(book.title, "Cosmos"));

}
};

The unit test BookTest constructs an instance of the class Book, passing the title as an
argument, and then tests the value of the book’s title attribute. Since the entire
implementation of BookTest is present in BookTest.h, no .cpp file is necessary.

BookTest is instantiated and run by a class called TestRunner, which also contains the
main() method for the test framework. Example A-3 shows the implementation of
TestRunner.

Example A-3. The class TestRunner

TestRunner.cpp
#include "stdio.h"
#tinclude "BookTest.h"

int main() {

BookTest test;
test.runTest();
printf("SUCCESS!\n");
return 0;

}

Compile TestRunner. The compiler will report that it cannot find the file Book.h, and
that the class Book is undeclared. No surprise there! So, the next step is to create the
most basic implementation of the class Book that will allow the code to compile, as
shown in Example A-4.

Example A-4. Initial version of the class Book

Book.h
#include "string.h"

Example 1:CreateaBook | 115

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example A-4. Initial version of the class Book (continued)

class Book {
public:
Book(const char* title) {}

char title[255];

1
The class TestRunner should compile now. The test framework and the unit test are
in place. To run the test, link the objects together into an executable:
g++ -0 TestRunner TestRunner.o UnitTest.o
Execute TestRunner. The following result is reported:

FAILURE!
BookTest.h:9:!strcmp(book.title, "Cosmos")

This failure demonstrates that the unit test framework is working. Note how the
UT_ASSERT() macro captures the file’s name and location, as well as the code con-
tents of the test assertion.

Step 2: Create a Book

BookTest fails because Book does not yet contain the functionality being tested. In this
step, the minimum necessary code to achieve unit test success is added.

The constructor for Book is changed to set the title attribute, as shown in
Example A-5.

Example A-5. The class Book with title attribute set by the constructor

Book.h
#include "string.h"

class Book {
public:

Book(const char* title) {
strcpy(this->title, title);
}

char title[255];

};

116 | AppendixA: Simple C++ Unit Test Framework

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Step 3: Test Again

The final step is to rebuild the code, re-run the unit test, and see whether the changes
produce the desired results.

Rebuild and execute TestRunner. The results of BookTest are reported:
SUCCESS!

An instance of Book can now be created and given a title.

Example 2: Create a Library

For the second example, functionality will be added to add a book to a library and
retrieve it. These features will be provided by a Library class. To test Library, the
unit test should add a Book to a Library and then get that Book from the Library, thus
verifying that the Library contains the Book. The unit test framework also will be
modified to report the number of tests run.

Step 1: Test Adding a Book to a Library

The initial version of LibraryTest is shown in Example A-6.

Example A-6. Initial version of LibraryTest

LibraryTest.h
#include "UnitTest.h"
#include "Library.h"

class LibraryTest : public UnitTest {
public:

void runTest() {
// Create library
Library library;
// Add book to library
Book *book = new Book("Cosmos");
library.addBook(book);
// Lookup book in library
Book *book2;
book2 = library.getBook("Cosmos");
UT _ASSERT(!strcmp(book2->title, "Cosmos"));

};

LibraryTest is added to TestRunner, as shown in Example A-7.

Example 2: CreateaLibrary | 117

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example A-7. TestRunner modified to run LibraryTest

TestRunner.cpp

#include "stdio.h"
#include "BookTest.h"
#include "LibraryTest.h"

int main() {

BookTest test;

test.runTest();

LibraryTest test2;

test2.runTest();

printf("SUCCESS!\n");

printf("%d tests completed successfully\n",
UnitTest::getNumSuccess());

return 0;

}

Now that more than one unit test is being run, it’s useful to report the value of the
test success counter. To obtain this value, the accessor function getNumSuccess() is
added to UnitTest. Also, a #define block is added so that the compiler doesn’t com-
plain about multiple definitions of UnitTest. Example A-8 shows the changes to
UnitTest.

Example A-8. UnitTest with accessor function getNumSuccess

UnitTest.h
#ifndef _UNIT TEST H_
#define UNIT TEST H_

#define UT_ASSERT(condition) \
assertTrue(condition, FILE , LINE__,#condition)

class UnitTest {
public:
virtual ~UnitTest() {}
virtual void runTest() = 0;
static int getNumSuccess() { return num_test_success; }
protected:
void assertTrue(bool condition, const char *file,

int line, const char *msg);
static int num_test success;

};

ttendif

118 | AppendixA: Simple C++ Unit Test Framework

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

A minimal “stub” version of the Library class is created so that LibraryTest can be
compiled, as shown in Example A-9.

Example A-9. Initial version of Library

Library.h
#include "Book.h"

class Library {

public:
Library();
~Library();

void addBook(Book *book);
Book* getBook(const char *title);

};

Library.cpp
#include "Library.h"

Library::Library() {}
Library::~Library() {}
void Library::addBook(Book* book) {}

Book* Library::getBook(const char *title) {
return new Book("");

}

Compiling and running this code produces the expected LibraryTest failure, as well
as the BookTest success:

FAILURE!
LibraryTest.h:17:!strcmp(book2->title, "Cosmos™)
1 tests completed successfully

Step 2: Add a Book to a Library

The final step is to add the new functionality to Library and verify that the unit test
succeeds.

Example A-10 shows the Library class with the minimum necessary code to pass

LibraryTest.

Example A-10. Library with changes to pass LibraryTest

Library.h
#include "Book.h"

class Library {

Example 2: CreateaLibrary | 119

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Example A-10. Library with changes to pass LibraryTest (continued)

public:
Library();
~Library();

void addBook(Book *book);
Book* getBook(const char *title);

private:
Book* books;

};

Library.cpp
#include "Library.h"

Library::Library() {

Library::~Library() {}

void Library::addBook(Book* book) {
books = book;
}

Book* Library::getBook(const char *title) {
return books;

}

Step 3: Check Unit Test Results

Compiling and running this code should demonstrate success for both of the unit
tests:

SUCCESS!
2 tests completed successfully

Note that this example code allocates a new Book but never deletes it, causing a mem-
ory leak.

The software architecture of the code in this example is shown in Figure A-2. It is
identical to the architecture of the Java version.

120 | AppendixA: Simple C++ Unit Test Framework

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestRunner UnitTest

A
runs >< inherits from

BookTest LibraryTest
tests tests
Book Library

Figure A-2. Object architecture of code in this example

Example 2: Create aLibrary | 121

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

APPENDIX B
JUnit Class Reference

This appendix provides a reference to the classes in the JUnit package junit.
framework. JUnit includes a number of other packages, but its core functionality
resides in this package.

In the descriptions in this appendix, the classes Object, String, Error, Class, and
Throwable are members of the standard package java.lang. The classes Vector and
Enumeration are members of java.util.

Assert

Description

Assert (see Figure B-1) contains only static methods. Its public interface consists solely of
unit test assert methods. These methods throw an AssertionFailedError or
ComparisonFailure if the test fails. Assert is a parent class of TestCase and other classes that
use unit test assert methods.

Assert

#Assert()

+assertEquals(in expected, in actual)

+assertFalse(in condition: Boolean)

+assertNotNull(in object: Object)

+assertNotSame(in expected: Object, in actual: Object)

+assertNull(in object: Object)

+assertSame(in expected: Object, in actual: Object)

+assertTrue(in condition: Boolean)

+fail()

—failNotEquals(in message: String, in expected: Object, in actual: Object)
—failNotSame(in message: String, in expected: Object, in actual: Object)
—failSame(in message: String)

—format(in message: String, in expected: Object, in actual: Object)

Figure B-1. The class Assert

122

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration

public class Assert
extends Object

Constructors

protected Assert()
Constructor for Assert. It is protected since this is a static class.

Public Methods

static void assertEquals(boolean expected, boolean actual)
static void assertEquals(String message, boolean expected, boolean actual)
Asserts equality of two boolean values.

static void assertEquals(byte expected, byte actual)
static void assertkEquals(String message, byte expected, byte actual)
Asserts equality of two byte values.

static void assertEquals(char expected, char actual)
static void assertEquals(String message, char expected, char actual)
Asserts equality of two char values.

static void assertEquals(double expected, double actual, double delta)

static void assertEquals(String message, double expected, double actual, double

delta)
Asserts equality of two double values within a tolerance of delta. A delta of O tests
exact equality.

static void assertEquals(float expected, float actual, float delta)

static void assertEquals(String message, float expected, float actual, float delta)
Asserts equality of two float values within a tolerance of delta. A delta of O tests
exact equality.

static void assertEquals(int expected, int actual)

static void assertEquals(String message, int expected, int actual)
Asserts equality of two int values.

static void assertEquals(long expected, long actual)

static void assertEquals(String message, long expected, long actual)
Asserts equality of two long values.

static void assertEquals(Object expected, Object actual)

static void assertEquals(String message, Object expected, Object actual)
Asserts equality of two Objects using the method Object.equals().

static void assertEquals(short expected, short actual)
static void assertEquals(String message, short expected, short actual)
Asserts equality of two short values.

static void assertkEquals(String expected, String actual)
static void assertEquals(String message, String expected, String actual)
Asserts equality of two Strings using the method String.equals().
static void assertFalse(boolean condition)
static void assertFalse(String message, boolean condition)
Asserts that a boolean condition is false.

Assert | 123

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

static void assertNotNull(Object object)
static void assertNotNull(String message, Object object)
Asserts that an Object is not null.

static void assertNotSame(Object expected, Object actual)
static void assertNotSame(String message, Object expected, Object actual)
Asserts that two Objects are not the same Object using the ==" operator.

static void assertNull(Object object)

static void assertNull(String message, Object object)
Asserts that an Object is null.

static void assertSame(Object expected, Object actual)
static void assertSame(String message, Object expected, Object actual)
Asserts that two Objects are the same Object using the == operator.

static void assertTrue(boolean condition)
static void assertTrue(String message, boolean condition)
Asserts that a condition is true, the most generic type of assertion.
static void fail()
static void fail(String message)
Produces a test failure.

Protected/Private Methods

private static void failNotEquals(String message, Object expected, Object actual)
private static void failNotSame(String message, Object expected, Object actual)
private static void failSame(String message)
Private methods to deal with a test failure by calling fail() with a formatted message
string.
static String format(String message, Object expected, Object actual)
Package private method to format a failure message.

Attributes

None.

AssertionFailedError

Description

AssertionFailedError (see Figure B-2) is a class representing an assertion failure. Aside
from being a distinct subclass, it is otherwise identical to Error. Thus, it is Throwable and
contains a stack trace.

The assert methods in Assert throw an AssertionFailedError (or a subclass of it) when an
assertion fails. The AssertionFailedError conveniently captures the stack trace of the code
location from which it was thrown, making it easy to find the assertion that failed.

Declaration

public class AssertionFailedError
extends java.lang.Error

124 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

AssertionFailedError

+AssertionFailedError()
+AssertionFailedError(in message: String)

Figure B-2. The class AssertionFailedError

Constructors

public AssertionFailedError()
public AssertionFailedError(String message)
The constructors for AssertionFailedError.

Public Methods

None.

Protected/Private Methods

None.

Attributes

None.

ComparisonFailure

Description

ComparisonFailure (see Figure B-3) is a specialized subclass of AssertionFailedError. It is
thrown only by the versions of assertEquals() that compare Strings.

ComparisonFailure

—fActual: String
—fExpected: String

+ComparisonFailure(in message: String, in expected: String, in actual: String)
+getMessage(): String

Figure B-3. The class ComparisonFailure

Declaration
public class ComparisonFailure
extends AssertionFailedError
Constructors

ComparisonFailure(String message, String expected, String actual)
The constructor for ComparisonFailure.

ComparisonFailure | 125

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

String getMessage()
Returns the failure description message. The redundant parts of the compared Strings
are replaced with “...” so that only the parts that differ are reported.

Protected/Private Methods

None.

Attributes

private String fActual
private String fExpected
The private attributes containing copies of the strings being compared.

Protectable

Description

Protectable (see Figure B-4) is an interface used by TestResult to run test methods in a
Throwable context.

<<interface>>
Protectable

+protect()

Figure B-4. The interface Protectable

Declaration

public interface Protectable

Constructors

None (it’s an interface).

Public Methods

public abstract void protect() throws Throwable
A class implementing Protectable has a public method named protect() that can
throw a Throwable.

Protected/Private Methods

None.

Attributes

None.

126 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Test

Description

Test (see Figure B-5) is an interface implemented by TestCase and TestSuite. A Test can be
run and its results collected in a TestResult. It is an important abstraction, since both indi-
vidual unit tests and sets of tests are run via the Test interface.

<<interface>>
Test

+countTest(ases(): int
+run(inout result: TestResult)

Figure B-5. The interface Test

Declaration

public interface Test

Constructors

None (it’s an interface).

Public Methods

public abstract int countTestCases()
Returns the number of test cases run by this Test.

public abstract void run(TestResult result)
Runs the Test and collect its results in a TestResult.

Protected/Private Methods

None.

Attributes

None.

TestCase

Description

TestCase (see Figure B-6) is an abstract class that acts as a parent for unit test classes. A
TestCase may contain a single test method or be a test fixture containing multiple tests.

A TestCase may be run directly by calling run(). More commonly, a TestRunner runs a
TestCase by calling run(TestResult), passing in a TestResult object to collect the results.

The method runTest() can be overridden by subclasses of TestCase to implement a test
class with a single test method.

TestCase | 127

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Alternatively, an instance of TestCase can be created with a name corresponding to the
name of a test method. The default implementation of runTest() uses reflection to invoke
the named test method. This allows a TestCase to have multiple test methods. The
following code snippet runs the test method BookTest.testBookTitle():

TestCase test = new BookTest("testBookTitle");

TestResult result = test.run();
Whichever way the test methods are run, TestCase ensures test isolation by running setUp()
prior to the test method and tearDown() afterwards.

TestCase

—fName: String

+TestCase(in name: String)
+TestCase()
+countTestCases():int
+getName(): String

+run(): TestResult
+run(inout result: TestResult)
+runBare()

+setName(in name: String)
+toString(): String
#runTest()

#setUp()

#tearDown()
#createResult(): TestResult

Figure B-6. The abstract class TestCase

Declaration

public abstract class TestCase
extends Assert
implements Test

Constructors

TestCase(String name)
A constructor that sets the name. As described above, this name may specify the test
method to run.

TestCase()
A constructor with no arguments for use in serialization. Should not be used other-
wise since it sets the name to null.

Public Methods

int countTestCases()
Returns the number of test cases run by this TestCase.
String getName()
Gets the name of this TestCase.
TestResult run()
Runs this TestCase and returns a new TestResult containing the results. This is a
convenience method not normally used by the test framework.

128 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

void run(TestResult result)
Runs this TestCase and collects the results in TestResult.
void runBare() throws Throwable
Runs the test fixture sequence: setUp(), runTest(), and tearDown().
void setName(String name)
Sets the name of this TestCase.
String toString()
Returns a string representation of the test case.

Protected/Private Methods

protected void runTest() throws Throwable
Runs the unit test and asserts its state using the assert methods from Assert. This
method is overridden by subclasses of TestCase, unless reflection is used to run test
methods.

protected void setUp() throws Exception
Sets up the test fixture by initializing any objects shared by test methods.

protected void tearDown() throws Exception
Tears down the fixture by cleaning up any shared objects.

protected TestResult createResult()
Creates an empty TestResult to collect results. Used by run().

Attributes

private String fName
Provides the name of this TestCase.

TestFailure

Description

TestFailure (see Figure B-7) is a class containing a Test and an associated exception.
TestResult produces a TestFailure whenever there is a test failure or error.

TestFailure

#FailedTest: Test
#fThrownException: Throwable

+TestFailure(in failedTest: Test, in thrownException: Throwable)
+exceptionMessage(): String

+ailedTest(): Test

~+isFailure(): boolean

+thrownException(): Throwable

+toString(): String

+trace(): String

Figure B-7. The class TestFailure

TestFailure | 129

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration

public class TestFailure
extends Object

Constructors

TestFailure(Test failedTest, Throwable thrownException)
Constructs a TestFailure for a Test and its exception.

Public Methods

String exceptionMessage()
Gets the exception message.
Test failedTest()
Gets the failed test.
boolean isFailure()
Returns TRUE if the exception is a failure represented by an instance of
AssertionFailedError. If FALSE, the test produced an error.
Throwable thrownException()
Gets the exception.
String toString()
Returns a description of the failure consisting of the string Test.toString() and the
exception message.
String trace()
Returns the stack trace for the exception.

Protected/Private Methods

None.

Attributes

protected Test fFailedTest
protected Throwable fThrownException
These attributes contain the Test and the exception.

TestListener

Description

TestListener (see Figure B-8) is an interface used for listeners to a TestResult object. A
listener may be any class that follows Test progress. Listeners are informed when a Test
starts and ends, and when a Test produces a failure or error.

Declaration

public interface TestlListener

130 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

interface
TestListener

+addError(in test : Test, in t : Throwable)
+addFailure(in test :Test, in e : AssertionFailedError)
+endTest(in test : Test)

+startTest(in test : Test)

Figure B-8. The interface TestListener

Constructors

None (it’s an interface).

Public Methods
void addError(Test test, Throwable t)
Informs listener that Test produced an error.

void addFailure(Test test, AssertionFailedError e)
Informs listener that Test produced a failure.

void endTest(Test test)
Informs listener that Test finished.

void startTest(Test test)
Informs listener that Test is about to be run.

Protected/Private Methods

None.

Attributes

None.

TestResult

Description

TestResult (see Figure B-9) is a class used to collect unit test results. The information
collected includes a count of tests run and any failures or errors produced. Failures and
errors are represented as instances of TestFailure. A TestResult runs a Test by calling its
runBare() method.

A set of unit tests is run by creating an empty TestResult and calling run(TestResult) on
each Test, passing the TestResult as a collecting parameter. At the end, the set of results is
retrieved from the TestResult and reported.

A TestResult also is created when the method Test.run() is used to execute a Test.

Declaration

public class TestResult
extends Object

TestResult | 131

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestResult

#fErrors: Vector
#fFailures:Vector
#fListeners: Vector
#fRunTests: int
—fStop:boolean

+TestResult()

+addError(in test: Test, in t:Throwable)
+addFailure(in test:Test, in e: AssertionFailedError)
+addListener(in listener: TestListener)
+endTest(in test: Test)

+errorCount():int

+errors(): Enumeration

+failureCount():int

+failures(): Enumeration
+removelistener(in listener: TestListener)
+runCount():int

+runProtection(in test: Test, in p: Protectable)
+shouldStop(): boolean

+startTest(in test: Test)

+stop()

+wasSuccessful():boolean

#run(in test: TestCase)
—cloneListeners():Vector

Figure B-9. The class TestResult

Constructors

TestResult()
A constructor creating an empty TestResult.

Public Methods

void addError(Test test, Throwable t)
Adds an error to the results.
void addFailure(Test test, AssertionFailedError e)
Adds a failure to the results.
void addListener(TestListener listener)
Registers a TestListener to receive events from this TestResult.
void endTest(Test test)
Informs the listeners that Test completed.
int errorCount()
Gets the number of errors in the results.
Enumeration errors()
Gets an Enumeration of the errors.
int failureCount()
Gets the number of failures in the results.
Enumeration failures()
Gets an Enumeration of the failures.

132 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

void removelistener(TestlListener listener)
Unregisters a TestListener.

int runCount()
Gets the number of tests run.

void runProtected(Test test, Protectable p)
Runs a Protectable and associates any failures or errors with Test. The Protectable is
assumed to run the Test’s test method.

boolean shouldStop()
Returns the stop flag.

void startTest(Test test)
Informs listeners that Test is starting. Also increments fRunTests by the amount
returned by Test.countTestCases().

void stop()
Sets the stop flag.

boolean wasSuccessful()
Returns TRUE if there are no failures or errors in the results.

Protected/Private Methods

protected void run(TestCase test)
A method to run a TestCase.

private Vector clonelisteners()

A method to return a copy of the listeners.

Attributes
protected Vector fErrors

A collection of TestFailures representing errors.
protected Vector fFailures

A collection of TestFailures representing failures.
protected Vector flListeners

A list of TestListeners for this TestResult.
protected int fRunTests

A counter to record the number of tests run.
private boolean fStop

A stop flag indicating that tests should stop running.

TestSuite

Description

TestSuite (see Figure B-10) is a class representing a collection of Tests. Since it implements
Test, it can be run just like a TestCase. When run, a TestSuite runs all the Tests it contains.
It may contain both TestCases and other TestSuites.

TestSuite | 133

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

A TestSuite can be constructed by giving it the class name of a TestCase. The TestSuite
constructor uses reflection to find all methods in the TestCase having names starting with
test. The code below adds all of BookTest’s test methods to a TestSuite and runs it:

TestSuite test = new TestSuite(BookTest.class);
test.run(new TestResult());

Tests also can be added to a TestSuite using the addTest() method.

TestSuite

—fName: String
—fTests:Vector

+TestSuite()

+TestSuite(in name: String)

+TestSuite(in class: Class)

+TestSuite(in class: Class, in name: String)
+addTest(in test: Test)

+addTestSuite(in testClass: Class)
+countTestCases():int

+createTest(in theClass: Class, in name: String): Test
+getName(): String

+getTestConstructor(in theClass: Class): Constructor
+run(inout result: TestResult)

+runTest(in test: Test, inout result: TestResult)
+setName(in name: String)

+testAt(in index:int): Test

+testCount():int

+tests(): Enumeration

+toString(): String

—addTestMethod(in m: Method, in named:Vector, in class: Class)
—exceptionToString(in t: Throwable): String
—isPublicTestMethod(in m: Method): boolean
—isTestMethod(in m: Method): boolean
—warning(in message: String): Test

Figure B-10. The class TestSuite

Declaration

public class TestSuite
extends Object
implements Test

Constructors

TestSuite()
A constructor that creates an empty TestSuite.

TestSuite(String name)
A constructor that creates an empty TestSuite with the given name.

TestSuite(Class class)
A constructor that takes a Class, uses reflection to find all methods with names
starting with test, and adds them to the TestSuite as test methods.

TestSuite(Class class, String name)
A constructor that creates a TestSuite with the given name and all test methods found
in the Class, as described for the previous constructor.

134 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

void addTest(Test test)
Adds a Test to the TestSuite.
void addTestSuite(Class testClass)
Adds the test methods from the Class to the TestSuite. Test methods are found using
reflection.
int countTestCases()
Returns the total number of test cases that will be run by this TestSuite. Test cases are
counted by recursively calling countTestCases() for every Test in this TestSuite.
static Test createTest(Class theClass, String name)
Creates an instance of Class as a Test with the given name.
String getName()
Returns the name of the TestSuite.
static java.lang.reflect.Constructor getTestConstructor(Class theClass)
Gets a constructor for the given Class that takes a single String as its argument, or gets
a constructor that takes no arguments.
void run(TestResult result)
Runs the Tests in this TestSuite and collects the results in TestResult.
void runTest(Test test, TestResult result)
Runs Test and collects the results in TestResult.
void setName(String name)
Sets the name of the TestSuite.
Test testAt(int index)
Returns the Test at the given index.
int testCount()
Returns the number of Tests in this TestSuite.
java.util.Enumeration tests()
Returns the Tests as an Enumeration.
String toString()
Returns a string representation of this TestSuite.

Protected/Private Methods

private void addTestMethod(java.lang.reflect.Method m, Vector names, Class class)
A private method to add a test method to this TestSuite.

private static String exceptionToString(Throwable t)
Returns the Throwable’s stack trace as a string.

private boolean isPublicTestMethod(java.lang.reflect.Method m)
Returns TRUE if Method has public access.

private boolean isTestMethod(java.lang.reflect.Method m)
A private method that returns TRUE if Method has no arguments, returns void, and has
public access.

private static Test warning(String message)
Returns a Test that will fail and logs a warning message.

TestSuite | 135

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Attributes

private String fName
The name of this TestSuite.

private Vector fTests
The Tests contained by this TestSuite.

136 | AppendixB: JUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

APPENDIX C
CppUnit Class Reference

This appendix contains a detailed reference for the CppUnit classes. Knowledge of
the details of CppUnit’s implementation is not necessary to use it for writing and
running unit tests. However, understanding the architecture is important for more
advanced usage, such as developing extensions.

In the descriptions that follow, the types string, ostream, map, deque, and vector
belong to the namespace std. All the header files are located under the CppUnit
installation directory in include/cppunit. Some are located in subdirectories of this
directory, such as extensions. All the source files are located in src/cppunit.

The entries are in alphabetical order by class name.

assertion_traits

Description

The template assertion traits (see Figure C-1) is used by the CPPUNIT ASSERT EQUAL()
macro. The template is specialized for different data types that are passed to the macro. For
example, the template specialization assertion traits<int> is used when CPPUNIT ASSERT
EQUAL() takes arguments of type int.

The declaration of assertion_traits is found in TestAssert.h. It belongs to the namespace
CppUnit.

assertion_traits

+equal(in x:T,in y:T):bool
+toString(in x:T):string

Figure C-1. The template assertion_traits

137

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration

template<class T> struct assertion_traits<T>

Constructors/Destructors

None.

Public Methods

static bool equal(const T& x, const T& y)
A function template to compare two arguments of type T. The default implementation
compares them using ==.

static string toString(const T8 x)
A function template to output a string representing the input argument of type T. The
default implementation creates the output string by creating a std::0StringStream
and using its << operator.

Protected/Private Methods

None.

Attributes

None.

AutoRegisterSuite

Description

The template AutoRegisterSuite (Figure C-2) is not intended for direct usage. It is stati-
cally instantiated by the macros CPPUNIT TEST SUITE REGISTRATION() and CPPUNIT TEST
SUITE_NAMED REGISTRATION(). It registers a test of the type TestCaseType. For more details
on test registration, see the description of “TestFactoryRegistry,” later in this appendix.

AutoRegisterSuite belongs to the namespace CppUnit. It is declared and implemented in
extensions/AutoRegisterSuite.h.

» TestCaseType !

AutoRegisterSuite

+AutoRegisterSuite()
+AutoRegisterSuite(in name: string)

Figure C-2. The template AutoRegisterSuite

Declaration

template<typename TestCaseType>
class AutoRegisterSuite<TestCaseType>

138 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors

AutoRegisterSuite()
Registers the test suite in the global registry.

AutoRegisterSuite(const string& name)
Registers the test suite in the registry specified by name.

Public Methods

None.

Protected/Private Methods

None.

Attributes

None.

CompilerQutputter

Description

The class CompilerOutputter (see Figure C-3) is a subclass of Outputter. It outputs test
results in the format that the Microsoft Visual C++ (VC++) IDE uses for compiler errors,
enabling the IDE to locate test assertions in the code.

CompilerOutputter belongs to the namespace CppUnit. It is declared in CompilerOutputter.h
and implemented in CompilerOutputter.cpp.

CompilerOutputter

—m_result: TestResultCollector
—m_stream: ostream

+CompilerOutputter(in result: TestResultCollector, in stream: ostream)
—CompilerOutputter(in copy: CompilerOutputter)
+~CompilerOutputter()

+defaultOutputter(in result: TestResultCollector, in stream: ostream): CompilerOutputter
+printDefaultMessage(in thrownException: Exception)
+printFailedTestname(in failure: TestFailure)

+printFailedDetail(in failure: TestFailure)

+printFailureLocation(in sourceLine: SourceLine)
+printFailureMessage(in failure: TestFailure)

+printFailureReport()

+printFailuresList()

+printFailureType(in failure: TestFailure)

+printNotEqualMessage(in thrownException: Exception)
+printStatistics()

+wrap(in message: string): string

+write()

—operator=(in copy: CompilerOutputter)

—splitMessagelntoLines(in message: string): Lines

Figure C-3. The class CompilerOutputter

CompilerQutputter | 139

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration
class CompilerOutputter : public Outputter

Constructors/Destructors

CompilerOutputter(TestResultCollector *result, ostreamd stream)
Creates a CompilerOutputter to get test results from result and outputs them to
stream.

virtual ~CompilerOQutputter()
A destructor.

Public Methods

static CompilerOutputter *defaultOutputter(TestResultCollector *result, ostreamd
stream)
A static method that returns a new CompilerOutputter.

virtual void printDefaultMessage(Exception *thrownException)
virtual void printFailedTestName(TestFailure *failure)
virtual void printFailureDetail(TestFailure *failure)
virtual void printFailurelocation(SourcelLine sourceline)
virtual void printFailureMessage(TestFailure *failure)
virtual void printFailureReport()
virtual void printFailuresList()
virtual void printFailureType(TestFailure *failure)
virtual void printNotEqualMessage(Exception *thrownException)
virtual void printStatistics()
virtual void printSucess()

Methods that write test results from m_result tom_stream. Called by write().

virtual string wrap(string message)
Returns message with carriage returns inserted to fit 80-column output width.

void write()
A method called to output results. Depending on test success or failure, calls
printSucess() or printFailureReport(), which in turn call the other print methods
just described.

Protected/Private Methods
static Lines splitMessageIntolines(string message)
Breaks message into Lines (private).
CompilerOutputter(const CompilerOutputterd copy)
A copy constructor, which is scoped private to prevent its use.
void operator=(const CompilerOutputter8 copy)
A copy operator, which is scoped private to prevent its use.

140 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Attributes
typedef vector<string> Lines

Defines the type Lines as a vector of string (private).
TestResultCollector *m result

The TestResultCollector passed in the constructor (private)

ostreamd m_stream
The output stream passed in the constructor (private).

Exception

Description

The class Exception (see Figure C-4) is descended from std::exception. It contains a
message describing the assertion failure and a SourcelLine giving its location.

Exception contains a nested class named Exception::Type. The Type value represents the
named Exception type, allowing runtime Exception type identification. For the base
Exception class, the Type is CppUnit: :Exception.

Exception belongs to the namespace CppUnit. It is declared in Exception.h and imple-
mented in Exception.cpp.

Exception

—m_message:string
—m_sourceline: SourceLine

+Exception(in message: string, in sourceLine: SourceLine)
+Exception(in other: Exception)

+~Exception()

+operator=(in other: Exception)

+clone(): Exception

+isInstanceOf(in type:Type): bool

+sourceLine(): SourceLine

+type():Type

+what(): char

Figure C-4. The class Exception

Declaration

class Exception : public std::exception

Constructors/Destructors

Exception(string message = "", Sourceline sourceline = SourcelLine())
A constructor for Exception. The message and sourcelLine arguments have default
empty values.

Exception(const Exceptiond other)
A copy constructor.

virtual ~Exception() throw()
A destructor.

Exception | 141

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods
Exception& operator=(const Exception& other)
A copy operator.

virtual Exception *clone() const
Returns a copy of the Exception.

virtual bool isInstanceOf(const Type& type) const
Returns TRUE if the Exception is of the given Type. Used for runtime Exception type
identification.

Sourceline sourceline() const
Returns m_sourceline.

static Type type()
Returns CppUnit::Exception.

const char *what() const throw()
Returns m_message as a C-style string.

Protected/Private Methods

None.

Attributes
string m _message
Assertion failure message (private).

Sourceline m_sourceline
Sourceline giving the location of the assertion failure (private).

Exception::Type

Description

The class Exception::Type (see Figure C-5) nested class within Exception. It is simply a
wrapper for a string containing an Exception type name.

Exception::Type is declared and implemented in Exception.h.

Exception::Type

—m_type:string

+Type(in type:string)
+operator==(in other: Exception::Type): bool

Figure C-5. The nested class Exception::Type

Declaration
class Type

142 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors
Type(string type)
A constructor.

Public Methods

bool operator==(const Type& other) const
An equality operator. Returns TRUE if this Type is equal to other.

Protected/Private Methods

None.

Attributes

const string m_type
The Type name (private).

ExpectedExceptionTraits

Description
The template ExpectedExceptionTraits (see Figure C-6) is used by TestCaller to expect an
Exception. It is an implementation detail and should not be used directly. A specialization
of this template to expect that no Exception is defined:
template<>
struct ExpectedExceptionTraits<NoExceptionExpected>

The class NoExceptionExpected is used in this template specialization and should not be
used otherwise.

ExpectedExceptionTraits belongs to the namespace CppUnit. It is declared and imple-
mented in TestCaller.h.

| ExceptionType
ExpectedExceptionTraits ~~ [~~~ """

+expectedException()

Figure C-6. The template ExpectedExceptionTraits

Declaration

template<typename ExceptionType>
struct ExpectedExceptionTraits<ExceptionType>

Constructors/Destructors

None.

ExpectedExceptionTraits | 143

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

static void expectedException()
A method to throw an Exception if the expected Exception is not caught.

Protected/Private Methods

None.

Attributes

None.

NamedRegistries

Description

The class NamedRegistries (see Figure C-7) manages all instances of TestFactoryRegistry
and is responsible for their creation and destruction. It also keeps track of which instances
of TestFactory have been destroyed, thus preventing multiple deletions.

NamedRegistries is a singleton: there is one and only one static instance of it. Thus, it has
no constructor. A reference to the single NamedRegistries object is obtained using its static
getInstance() method.

NamedRegistries belongs to the namespace CppUnit. It is declared and implemented in
TestFactoryRegistry.cpp.

NamedRegistries

—m_registries: Registries
—m_destroyedFactories: Factories
—m_factoriesToDestroy: Factories

+~NamedRegistries()

+getinstance(): NamedRegistries
+getRegistry(in name: string): TestFactoryRegistry
+needDestroy(in factory: TestFactory): hool
+wasDestroyed(in factory: TestFactory)

Figure C-7. The singleton class NamedRegistries

Declaration

class NamedRegistries

Constructors/Destructors

~NamedRegistries()
A destructor. Deletes all instances of TestFactoryRegistry.

144 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods
static NamedRegistries& getInstance()
Gets a reference to the single NamedRegistries object.

TestFactoryRegistry8 getRegistry(string name)
Returns the named TestFactoryRegistry if it exists; otherwise, creates a new one with
the given name and returns it.

bool needDestroy(TestFactory *factory)
Returns TRUE if factory has not yet been destroyed.

void wasDestroyed(TestFactory *factory)
Signals that factory was destroyed.

Protected/Private Methods

None.

Attributes
typedef map<string, TestFactoryRegistry*> Registries

Defines the type Registries as a map of TestFactoryRegistry by name (private).
typedef std::set<TestFactory*> Factories

Defines the type Factories as a set of TestFactory (private).
Registries m_registries

Contains managed instances of TestFactoryRegistry (private).
Factories m_destroyedFactories

Contains instances of TestFactory that have been destroyed (private).
Factories m_factoriesToDestroy

Contains instances of TestFactory that need to be destroyed (private).

NotEqualException

Description

The class NotEqualException (see Figure C-8) is a subclass of Exception. A NotEqual-
Exception is thrown when an equality assertion fails. Tts Type is CppUnit::
NotEqualException.

NotEqualException belongs to the namespace CppUnit. It is declared in NotEqualException.h
and implemented in NotEqualException.cpp.

Declaration

class NotEqualException : public Exception

NotEqualException | 145

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

NotEqualException

—m_actual: string
—m_additionaMessage: string
—m_expected:string

+NotEqualException(in expected: string, in actual: string, in sourceLine: SourceLine, inadditionalMessage: string)
+NotEqualException(in other: NotEqualException)

+~NotEqualException()

+operator=(in other: NotEqualException): NotEqualException

+actualValue(): string

+additionalMessage(): string

+clone(): Exception

+expectedValue(): string

+isInstanceOfValue(): string

+type():Type

Figure C-8. The class NotEqualException

Constructors/Destructors

NotEqualException(string expected, string actual, Sourceline sourceline =
Sourceline(), string additionalMessage = "")
A constructor for NotEqualException. The string arguments expected and actual represent

the values that fail the equality test and cause the NotEqualException. The sourcelLine and
additionalMessage arguments have default empty values.

NotEqualException(const NotEqualExceptiond other)
A copy constructor.

virtual ~NotEqualException() throw()
A destructor.

Public Methods
NotEqualException8 operator=(const NotEqualException& other)
A copy operator.

string actualvalue() const
Returns the actual value.

string additionalMessage() const
Returns the additionalMessage.

virtual Exception *clone() const
Returns a copy of the NotEqualException.

string expectedValue() const
Returns the expected value.

virtual bool isInstanceOf(const Type& type) const
Returns TRUE if the NotEqualException is of the given Type. Used for runtime Exception
type identification.

static Type type()
Returns CppUnit::NotEqualException.

Protected/Private Methods

None.

146 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Attributes
string m_actual
The actual value for the equality test (private).
string m_additionalMessage
An assertion failure message (private).
string m_expected
The expected value for the equality test (private).

Orthodox

Description
The template Orthodox (see Figure C-9) is a subclass of TestCase. When specialized for a
class, it tests the class for “orthodoxy,” represented by the following conditions:

* The class has a default (no argument) constructor

* The class has equality (==) and inequality (!=) operators

* The class has an assignment (=) operator

* The class has a negation (!) operator

* The class has a copy constructor

The test verifies not only that ClassUnderTest has these operations, but also that the opera-
tions’ semantics are correct. For example, double negation should result in equality.

The main purpose of Orthodox is to serve as a working example of a templated test case.

Orthodox belongs to the namespace CppUnit. It is declared and implemented in extensions/

Orthodox.h.
| ClassUnderTest !
Orthodoxy "~~~ 7777
+0rthodoxy()
+call(in object: ClassUnderTest): ClassUnderTest
+runTest()

Figure C-9. The templated test class Orthodoxy

Declaration

template<typename ClassUnderTest>
class Orthodox : public TestCase

Constructors/Destructors
Orthodox()

A constructor.

Orthodox | 147

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods
ClassUnderTest call(ClassUnderTest object)
Returns object.

void runTest()
Runs the orthodoxy tests.

Protected/Private Methods

None.

Attributes

None.

Outputter

Description

The abstract class Outputter (see Figure C-10) represents the interface for the output of test
result summaries. It’s classes re TextOutputter, XmlOutputter, it is implemented in
CompilerOutputter.

Outputter belongs to the namespace CppUnit. It is declared in Outputter.h.

Outputter

+~Qutputter()
+write()

Figure C-10. The abstract class Outputter

Declaration
class Outputter

Constructors/Destructors

virtual ~Outputter()
A destructor.

Public Methods

virtual void write() =0
A pure, virtual method representing the Outputter interface.

Protected/Private Methods

None.

Attributes

None.

148 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

RepeatedTest

Description

The class RepeatedTest (see Figure C-11) is a subclass of TestDecorator. It runs a Test for a
specified number of repetitions.

RepeatedTest belongs to the namespace CppUnit. It is declared in extensions/RepeatedTest.h
and implemented in RepeatedTest.cpp.

RepeatedTest

—m_timesRepeat:int

+RepeatedTest(in test: Test, in timesRepeat: int)
+countTestCases():int

-+run(in result:TestResult)

+toString(): string

—RepeatedTest(in other: RepeatedTest)
—operator=(in other: RepeatedTest)

Figure C-11. The class RepeatedTest

Declaration

class RepeatedTest : public TestDecorator

Constructors/Destructors

RepeatedTest(Test *test, int timesRepeat)
A constructor taking the Test to run and the number of repetitions.

Public Methods

int countTestCases() const
Returns the number of test cases that this RepeatedTest will run, which is the number
of test cases the Test contains multiplied by the number of repetitions.

void run(TestResult *result)
A method to run the RepeatedTest.

string toString() const
Returns a string representation of the RepeatedTest.

Protected/Private Methods

RepeatedTest(const RepeatedTest &)
A copy constructor declared private to prevent its use.

void operator=(const RepeatedTest &)
A copy operator declared private to prevent its use.

Attributes

const int m_timesRepeat
The number of test repetitions to run (private).

RepeatedTest | 149

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

SourceLine

Description

The class Sourceline (see Figure C-12) represents a location in a source code file. It is used to
capture the location of an assertion failure. A SourcelLine usually is created using the macro
CPPUNIT_SOURCELINE(), which uses the preprocessor directives = FILE and _LINE_ _ to
obtain the filename and line number of the location where it’s invoked:

#define CPPUNIT_SOURCELINE() ::CppUnit::Sourceline(_ FILE , LINE)

Sourceline belongs to the namespace CppUnit. It is declared in SourceLine.h and imple-
mented in SourceLine.cpp.

Sourceline

—fileName: string
—lineNumber:int

+SourceLine(in fileName:string, in lineNumber:int)
+SourceLine()

+~SourceLine()

+operator==(in other: SourceLine)
+operator!=(in other: SourceLine)

+fileName(): string

+isValid(): bool

+lineNumber():int

—RepeatedTest(in other: RepeatedTest)
—operator=(in other: RepeatedTest)

Figure C-12. The class SourceLine

Declaration

class Sourceline

Constructors/Destructors
Sourceline(string &fileName, int lineNumber)
A constructor taking a filename and line number.

Sourceline()
A default constructor creating an uninitialized SourceLine.

virtual ~Sourceline()
A destructor.

Public Methods

bool operator==(const Sourceline &other) const
A comparison operator.

bool operator!=(const SourcelLine &other) const
An inequality operator.

string fileName() const
Returns the filename.

150 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

bool isValid() const
Returns TRUE if Sourceline is initialized (the filename is not empty).

int 1ineNumber() const
Returns the line number.

Protected/Private Methods
RepeatedTest(const RepeatedTest &)
A copy constructor declared private to prevent its use.

void operator=(const RepeatedTest &)
A copy operator declared private to prevent its use.

Attributes
string m_fileName
The source filename (private).

int m_lineNumber
The source file line number (private).

SynchronizedObject

Description

The class SynchronizedObject (see Figure C-13) serves as the parent class for synchronized
objects. Synchronized objects incorporate a mutex-based lock mechanism, allowing them to
be used concurrently by multiple threads.

SynchronizedObject includes the nested classes SynchronizationObject, which is its mutex
object, and ExclusiveZone, which locks a SynchronizationObject.

SynchronizedObject belongs to the namespace CppUnit. It is declared in SynchronizedObject.h
and implemented in SynchronizedObject.cpp.

SynchronizedObject

—m_syncObject: SynchronizationObject

+SynchronizedObject(in syncObject: SynchronizationObject)
+~SynchronizedObject()

#setSynchronizationObject(in syncObject: SynchronizationObject)
—SynchronizedObject(in other: SynchronizedObject)
—operator=(in other: SynchronizedObject)

Figure C-13. The base class SynchronizedObject

Declaration

class SynchronizedObject

SynchronizedObject | 151

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors

SynchronizedObject(SynchronizationObject *syncObject = 0)
A constructor taking a SynchronizationObject (mutex.) If syncObject is null, a new
SynchronizationObject is created.

virtual ~SynchronizedObject()
A destructor.

Public Methods

None.

Protected/Private Methods
virtual void setSynchronizationObject(SynchronizationObject *syncObject)
Sets the SynchronizationObject.

SynchronizedObject(const SynchronizedObject ©)
A copy constructor declared private to prevent its use.

void operator=(const SynchronizedObject ©)
A copy operator declared private to prevent its use.

Attributes

SynchronizationObject *m syncObject
A pointer to the SynchronizationObject for this SynchronizedObject (protected).

SynchronizedObject::ExclusiveZone

Description

The class ExclusiveZone (see Figure C-14) is a nested class belonging to Synchronized-
Object. It locks a SynchronizationObject (mutex) upon construction and unlocks it upon
destruction, thus providing protection during the scope of its existence.

ExclusiveZone belongs to the namespace CppUnit. It is declared and implemented in
SynchronizedObject.h.

ExclusiveZone

+m_syncObject: SynchronizationObject

+ExclusiveZone(in syncObject: SynchronizationObject)
+~ExclusiveZone()

Figure C-14. The nested class SynchronizedObject::ExclusiveZone

Declaration

class ExclusiveZone

152 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors

ExclusiveZone(SynchronizationObject *syncObject)
Constructs ExclusiveZone and locks syncObject.

~ExclusiveZone()
Destroys ExclusiveZone and unlocks syncObject.

Public Methods

None.

Protected/Private Methods

None.

Attributes

SynchronizationObject *m syncObject
A pointer to the SynchronizationObject for this ExclusiveZone (public).

SynchronizedObject::SynchronizationObject

Description

The class SynchronizationObject (see Figure C-15) is a nested class belonging to
SynchronizedObject. It acts as the mutex for a SynchronizedObject and so can be locked or
unlocked.

SynchronizationObject belongs to the namespace CppUnit. It is declared and implemented
in SynchronizedObject.h.

SynchronizationObject

+SynchronizationObject()
+~SynchronizationObject()
+lock()

+unlock()

Figure C-15. The nested class SynchronizationObject

Declaration

class SynchronizationObject

Constructors/Destructors
SynchronizationObject()
A constructor.

~SynchronizationObject()
A destructor.

SynchronizedObject::SynchronizationObject | 153

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

virtual void lock()
Locks the SynchronizationObject.

virtual void unlock()
Unlocks the SynchronizationObject.

Protected/Private Methods

None.

Attributes

None.

Test

Description

The abstract class Test (see Figure C-16) is the central design element of CppUnit, as in
other versions of xUnit. It is the base class for all test objects. A Test may consist of a single
unit test or of a collection of Tests. When a Test is run, a TestResult collects its results.

All of Test’s methods are virtual and should be overridden by descendant classes.

Test belongs to the namespace Cppunit. It is declared in Test.h and implemented in Test.cpp.

Test

+~Test()

+run(in result: TestResult)
+countTestCases():int
+getName():string
+toString(): string

Figure C-16. The abstract class Test

Declaration

class Test

Constructors/Destructors

virtual ~Test()
A destructor.

Public Methods
virtual int countTestCases() const = 0
Returns the number of test cases to be run by this Test.

virtual string getName() const = 0
Returns the name of this Test.

154 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

virtual void run(TestResult *result) = 0
Runs Test and collects the results in result.

virtual string toString() const = 0
Returns a short description of this Test, generally incorporating the name and Test

type.

Protected/Private Methods

None.

Attributes

None.

TestCaller

Description

The template class TestCaller (see Figure C-17) is used to create and run a TestCase
containing a TestMethod, usually in the context of a TestFixture. This is useful when a
TestFixture has multiple test methods but only one of them should be run, or when test
methods are being run by name. A TestMethod must take no arguments and return void to
be invoked using TestCaller.

When TestCaller is specialized and instantiated, the type Fixture should be TestFixture or
a subclass of it. The type ExpectedException defaults to NoExceptionExpected, meaning that
an Exception is not expected when the TestMethod is run, and the test fails if one is thrown.
An Exception type can be provided when TestCaller is specialized, so that it is expected
when the TestCase is run. In this case, the test fails if the ExpectedException is not thrown.

TestCaller belongs to the namespace CppUnit. It is declared and implemented in TestCaller.h.

TestCaller

—m_fixture: Fixture
—m_ownFixture: bool
—m_test: TestMethod

+TestCaller(in name:string, in test: TestMethod)

+TestCaller(in name: string, in test: testMethod, in fixture: Fixture)
+~TestCaller()

#runTest()

#setUp()

#tearDown()

#toString()

—TestCaller(in other)

—operator=(in other)

Figure C-17. The template class TestCaller

Declaration

template<typename Fixture, typename ExpectedException = NoExceptionExpected>
class TestCaller : public TestCase

TestCaller | 155

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors

TestCaller(string name, TestMethod test)
A constructor used when a TestFixture is not provided. In this case, the TestMethod is
run in a new, default TestFixture owned by the TestCaller.

TestCaller(string name, TestMethod test, Fixtured& fixture)
A constructor taking a TestMethod and a reference to a TestFixture. The TestCaller
does not own the TestFixture in this case.

TestCaller(string name, TestMethod test, Fixture *fixture)
A constructor taking a TestMethod and a pointer to a TestFixture. When a TestCaller
is constructed this way, it owns the TestFixture.

~TestCaller()
A destructor. If the TestCaller owns the TestFixture, it deletes it.

Public Methods

None.

Protected/Private Methods
void runTest()

A Protected method that runs the TestMethod.
void setUp()

A Protected method that sets up the Fixture by calling its setUp() method.
void tearDown()

A Protected method that tears down the Fixture by calling its tearDown() method.
string toString() const

A Protected method returning a string representation of this TestCaller.
TestCaller(const TestCaller &other)

A copy constructor declared private to prevent its use.

TestCaller8 operator=(const TestCaller &other)
A copy operator declared private to prevent its use.

Attributes
Fixture *m_fixture
A pointer to Fixture (private).
bool m ownFixture
If TRUE, TestCaller owns Fixture and deletes it in its destructor (private).

TestMethod m_test
The TestMethod that this TestCaller will run (private).

TestCase

Description

The class TestCase (see Figure C-18) represents a test object. Its purpose is to run test
methods and thereby produce test results.

156 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestCase may be used in a number of ways. The simplest way to write a test object is to
create a subclass of TestCase that overrides runTest() with a custom test method. To run
the test object, call the run() method, which returns a TestResult.

More commonly, a subclass of TestFixture is created with multiple test methods.
TestRunner then uses TestCaller to run the test methods, creating a new instance of
TestCase for each one.

TestCase belongs to the namespace CppUnit. It is declared in TestCase.h and implemented
in TestCase.cpp.

TestCase

—m_name:string

+TestCase(in name: string)
+TestCase()

+~TestCase()
+countTestCases():int
+getName():string
+run():TestResult

+run(in result: TestResult)
+toString(): string
#defaultResult():TestResult
#runTest()

—TestCase(in other:TestCase)
—operator=(in other:Test(ase)

Figure C-18. The class TestCase, base class for all test objects

Declaration

class TestCase : public Test, public TestFixture

Constructors/Destructors

TestCase(string name)
Constructs a TestCase with the given name.
TestCase()
The default constructor used by TestCaller to create a temporary TestCase. Should not
be used directly, since it creates a TestCase with no name.
~TestCase()
A destructor.

Public Methods

virtual int countTestCases() const
Returns 1, the number of test cases contained in a base TestCase. Descendants of
TestCase may contain multiple test cases.

string getName() const
Returns the TestCase name.

virtual TestResult *run()
A convenience method that runs this TestCase and returns a new TestResult
containing the results.

TestCase | 157

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

virtual void run(TestResult *result)
A method that runs the test, catches any failures or errors, and collects the results in
result. The sequence of calls is: setUp(), runTest(), tearDown(). This method is the
interface that the framework normally uses to run tests.

string toString() const
Returns a string representation of this TestCase, including the class name and TestCase
name.

Protected/Private Methods

TestResult *defaultResult()
A Protected method that returns a default empty TestResult. Used by run().

virtual void runTest()
A Protected method representing the actual test method. The default version does
nothing. May be overridden by descendants of TestCase to implement actual tests. The
overridden runTest() method contains the test assertions that result in success or
failure of the unit test.

TestCase(const TestCase &other)
A copy constructor declared private to prevent its use.

TestCased operator=(const TestCase &other)
A copy operator declared private to prevent its use.

Attributes

const string m_name
The TestCase name (private).

TestDecorator

Description

The class TestDecorator (see Figure C-19) allows the functionality of a Test to be extended
without subclassing it. TestDecorator implements the Test interface and thus can be run
like any other Test. When constructed, it takes a reference to another Test that it “deco-
rates,” or wraps. A TestDecorator modifies the decorated Test by performing other
operations before or after running it.

The classes RepeatedTest and TestSetUp are subclasses of TestDecorator and provide prac-
tical examples of its usage. The base implementation of TestDecorator simply is a wrapper
for a Test and does not change its operation.

TestDecorator belongs to the namespace CppUnit. It is declared and implemented in
extensions/TestDecorator.h.

Declaration

class TestDecorator : public Test

158 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestDecorator

#m_test:Test

+TestDecorator(in test: Test)
+~TestDecorator()
+countTestCases():int
+getName():string

+run(in result: TestResult)
+toString():string

—TestDecorator(in other:TestDecorator)
—operator=(in other:TestDecorator)

Figure C-19. The class TestDecorator

Constructors/Destructors
TestDecorator(Test *test)
Constructs a TestDecorator to decorate test.

~TestDecorator()
A destructor. Does not delete the decorated Test.

Public Methods
int countTestCases() const
Returns the value of countTestCases() for the decorated Test.

string getName() const
Returns the name of the decorated Test.

void run(TestResult *result)
Calls run(result) on the decorated Test.

string toString() const
Returns the value of toString() for the decorated Test.

Protected/Private Methods

TestDecorator(const TestDecorator &other)
A copy constructor declared private to prevent its use.

void operator=(const TestDecorator &other)
A copy operator declared private to prevent its use.

Attributes

Test *m _test
The Test decorated by this TestDecorator (protected).

TestFactory

Description

The abstract class TestFactory (see Figure C-20) defines the interface for a factory that
produces Test objects.

TestFactory | 159

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFactory belongs to the namespace CppUnit. It is declared in extensions/TestFactory.h. Tt
is abstract and has no implementation.

TestFactory

+~TestFactory()
+makeTest(): Test

Figure C-20. The abstract class TestFactory

Declaration

class TestFactory

Constructors/Destructors

virtual ~TestFactory()
A destructor.

Public Methods

virtual Test* makeTest() = 0
A pure, virtual method to create a Test.

Protected/Private Methods

None.

Attributes

None.

TestFactoryRegistry

Description

The class TestFactoryRegistry (see Figure C-21) is a subclass of TestFactory. It acts as both
a registry and a factory for Test objects. It registers Tests, and it produces TestSuites
containing registered Tests. Rather than containing the registered Test objects themselves,
it contains a TestFactory for each one.

The default registry is a TestFactoryRegistry named “All Tests.” Named instances of
TestFactoryRegistry may also be created.

The macro CPPUNIT TEST SUITE REGISTRATION() takes a Test and adds a TestFactory for it
to the default registry. The macro CPPUNIT TEST SUITE NAMED REGISTRATION() similarly adds
a TestFactory to a named registry. Calling a registry’s makeTest() method creates a
TestSuite containing all the registered Tests, demonstrating the main usefulness of
TestFactoryRegistry.

The singleton NamedRegistries manages all instances of TestFactoryRegistry.

160 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The following code snippet registers the Test class BookTest in the default registry and
creates a TestSuite containing it:

CPPUNIT TEST SUITE REGISTRATION(BookTest);

TestFactoryRegistry 8registry = TestFactoryRegistry::getRegistry();

TestSuite *suite = registry.makeTest();
TestFactoryRegistry belongs to the namespace CppUnit. It is declared in extensions/
TestFactoryRegistry.h and implemented in TestFactoryRegistry.cpp.

TestFactoryRegistry

—m_factories: Factories
—m_name:string

+TestFactoryRegistry(in name: string)
+~TestFactoryRegistry()

+addTestToSuite(in suite: TestSuite)

+getRegistry(): TestFactoryRegistry

+getRegistry(in name:string): TestFactoryRegistry
+makeTest(): Test

+registerFactory(in factory: TestFactory)
+registerFactory(in name:string, in factory: TestFactory)
—TestFactoryRegistry(in copy: TestFactoryRegistry)
—operator=(in copy:TestFactoryRegistry)

Figure C-21. The class TestFactoryRegistry

Declaration
class TestFactoryRegistry : public TestFactory

Constructors/Destructors

TestFactoryRegistry(string name = "All Tests")

A constructor. If no name is provided, a default registry named “All Tests” is created.
virtual ~TestFactoryRegistry()

A destructor. Each TestFactory contained by this TestFactoryRegistry is deleted if

NamedRegistries indicates that it has not already been deleted. This prevents double
deletion of a TestFactory.

Public Methods

void addTestToSuite(TestSuite *suite)

Adds the registered Test objects to a preexisting TestSuite.
static TestFactoryRegistry &getRegistry()

Returns the default TestFactoryRegistry named “All Tests.”

static TestFactoryRegistry 8getRegistry(const string &name)
Returns a TestFactoryRegistry with the given name. If the registry doesn’t already
exist, it is created.

virtual Test* makeTest()
Creates a TestSuite containing the registered Test objects. The TestSuite has the same
name as the TestFactoryRegistry. For example, the TestSuite created by the default
registry is named “All Tests.”

TestFactoryRegistry | 161

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

void registerFactory(TestFactory *factory)
Adds a TestFactory to the TestFactoryRegistry.

void registerFactory(const string &name, TestFactory *factory)
A deprecated method that adds a TestFactory to the TestFactoryRegistry with the
given name. The previous version of registerFactory() should be used instead.

Protected/Private Methods

TestFactoryRegistry(const TestFactoryRegistry ©)
A copy constructor declared private to prevent its use.

void operator=(const TestFactoryRegistry ©)
A copy operator declared private to prevent its use.

Attributes

typedef map<string, TestFactory *> Factories
Defines the type Factories as a map of TestFactory objects by name (private).
Factories m factories

Registered TestFactory objects (private).

string m_name
The name of this TestFactoryRegistry (private).

TestFailure

Description

The class TestFailure (see Figure C-22) summarizes the failure of a Test. The failure may
be due to an assertion failure or an error. An error is defined as any exception that isn’t an
assertion failure.

TestFailure belongs to the namespace CppUnit. It is declared in TestFailure.h and is imple-
mented in TestFailure.cpp.

TestFailure

#m_failedTest: Test
#m_isError:hool
#m_thrownException: Exception

+TestFailure(in failedTest: Test, in thrownException: Exception, in isError: bool)
+~TestFailure()

+clone(): TestFailure
+failedTest(): Test
+failedTestName(): string
—+isError(): bool

+sourceLine(): SourceLine
+thrownException(): Exception
+toString():string
—TestFailure(in other:TestFailure)
—operator=(in other: testFailure)

Figure C-22. The class TestFailure

162 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration

class TestFailure

Constructors/Destructors

TestFailure(Test *failedTest, Exception *thrownException, bool isError)
A constructor taking the Test that failed, the Exception that was thrown, and a flag
indicating whether the failure was an assertion failure or an error.

virtual ~TestFailure()
A destructor.

Public Methods
virtual TestFailure *clone() const
Returns a copy of this TestFailure.

virtual Test *failedTest() const
Returns the failed Test.

virtual string failedTestName() const
Returns the name of the failed Test.

virtual bool isError() const
Returns TRUE if the TestFailure is due to an error and not to an assertion failure.

virtual Sourceline sourceline() const
Returns the Sourceline for this TestFailure.

virtual Exception *thrownException() const
Returns the Exception associated with this TestFailure.

virtual string toString() const
Returns a string representation of this TestFailure.

Protected/Private Methods
TestFailure(const TestFailure 8other)
A copy constructor declared private to prevent its use.

TestFailure8 operator=(const TestFailure& other)
A copy operator declared private to prevent its use.

Attributes
Test *m_failedTest
The failed Test (protected).
bool m isError
Returns TRUE if the TestFailure is due to an error, FALSE if it is due to an assertion
failure (protected).
Exception *m_thrownException
The Exception associated with this TestFailure (protected).

TestFailure | 163

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFixture

Description

The class TestFixture (see Figure C-23) defines the interface of a test fixture. TestCase is
descended from TestFixture, so every test object is implicitly a test fixture. However, a test
object is truly being used as a fixture only if it has multiple test methods that share objects.
Philosophically, a fixture is a test environment, and the test methods interact with the envi-
ronment to test different behaviors.

The TestFixture methods setUp() and tearDown() are used to initialize and clean up the
fixture’s shared objects. When there are multiple test methods in the fixture, setUp() and
tearDown() are called for each one. This ensures test isolation by making sure the fixture is
in the same state for each test.

TestFixture belongs to the namespace CppUnit. It is declared and implemented in
TestFixture.h.

TestFixture

+setUp()
+tearDown()

Figure C-23. The class TestFixture

Declaration

class TestFixture

Constructors/Destructors

virtual ~TestFixture()
A destructor.

Public Methods

virtual void setUp() {}
Initializes the fixture’s shared objects. The default implementation does nothing.

virtual void tearDown() {}
Cleans up the fixture’s shared objects. The default implementation does nothing.

Protected/Private Methods

None.

Attributes

None.

164 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFixtureFactory

Description

The abstract class TestFixtureFactory (see Figure C-24) defines the interface for a factory
to produce TestFixture objects.

TestFixtureFactory belongs to the namespace CppUnit. It is declared in extensions/
HelperMacros.h. It is abstract and has no implementation.

TestFixtureFactory

+makeFixture(): TestFixture

Figure C-24. The abstract class TestFixtureFactory

Declaration

class TestFixtureFactory

Constructors/Destructors

None.

Public Methods

virtual TestFixture *makeFixture() = 0
A pure virtual method to create a TestFixture.

Protected/Private Methods

None.

Attributes

None.

TestListener

Description

The class TestListener (see Figure C-25) defines an interface for observers to receive test
progress notifications from a TestResult. The method TestResult::addListener() is used
to register a TestListener.

TestListener belongs to the namespace CppUnit. It is declared in TestListener.h, which also
provides its default empty implementation.

Declaration

class TestlListener

Testlistener | 165

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestListener

+~TestListener()

+addFailure(in failure: TestFailure)
+endTest(in test: Test)
+startTest(in test: Test)

Figure C-25. The class TestListener

Constructors/Destructors

virtual ~TestlListener()
A destructor.

Public Methods

virtual void addFailure(const TestFailure &failure)
A method called to notify the TestListener that a failure has occurred. The argument
failure is a temporary object that is deleted after the call.

virtual void endTest(Test *test)
A method called to notify the TestListener that test has ended.

virtual void startTest(Test *test)
A method called to notify the TestListener that test is about to be run.

Protected/Private Methods

None.

Attributes

None.

TestResult

Description

The class TestResult (see Figure C-26) receives test results from Test objects. Test results
can be categorized as successes, failures, and errors. Normally, when multiple Test classes
are run, a single TestResult is passed to the run() method of each Test.

A TestResult informs its observers of test progress and results using the TestListener inter-
face. The TestListener subclass TestResultCollector normally is used to store the results.
TestResult doesn’t store the results itself.

A TestResult is a SynchronizedObject. Its operations are mutex-protected and thread-safe,
allowing Test and TestListener objects to run in separate threads.

TestResult belongs to the namespace CppUnit. It is declared in TestResult.h and imple-
mented in TestResult.cpp.

Declaration
class TestResult : protected SynchronizedObject

166 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestResult

#m_listeners: TestListeners
#m_stop:bool

+TestResult(in syncObject: SynchronizationObject)
+~TestResult()

+addError(in test: Test, in e: Exception)
+addFailure(in test:Test, in e: Exception)
+addListener(in listener: TestListener)
+endTest(in test: Test)
+removelistener(in listener: TestListener)
+reset()

+shouldStop(): bool

+startTest(in test: Test)

+stop()

#addFailure(in failure:TestFailure)
—TestResult(in other:TestResult)
—operator=(in other:TestResult)

Figure C-26. The class TestResult

Constructors/Destructors

TestResult(SynchronizationObject *syncObject = 0)
A constructor. If a SynchronizationObject is not provided, a new one is created.
virtual ~TestResult()
A destructor.
Public Methods
virtual void addError(Test *test, Exception *e)
A method that informs TestResult of a test error (an Exception not caused by a test
assertion).
virtual void addFailure(Test *test, Exception *e)
A method that informs TestResult of a test failure (an Exception caused by a test
assertion).
virtual void addListener(TestListener *listener)
Adds a TestListener to this TestResult.
virtual void endTest(Test *test)
A method that informs TestResult that test has ended.
virtual void removelistener(TestListener *1listener)
Removes a TestListener from this TestResult.
virtual void reset()
Sets m_stop to FALSE to prepare for a new test run.
virtual bool shouldStop() const
Returns the value of m_stop.
virtual void startTest(Test *test)
A method that informs TestResult that test is about to be run.
virtual void stop()
Sets m_stop to TRUE to stop the test run.

TestResult | 167

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Protected/Private Methods
void addFailure(const TestFailure &failure)

A protected method that adds a TestFailure and inform listeners.
TestResult(const TestResult &other)

A copy constructor declared private to prevent its use.

TestResult8 operator=(const TestResult &other)
A copy operator declared private to prevent its use.

Attributes
typedef deque<TestlListener *> TestlListeners
Defines the type TestListeners as a deque of TestListener objects (protected).
TestlListeners m listeners
The test listeners (protected).
bool m stop
If TRUE, the test run should stop (protected).

TestResultCollector

Description

The class TestResultCollector (see Figure C-27) collects test results that it receives from a
TestResult via the Testlistener interface. The results consist of the Test objects run and
any failures or errors produced.

A TestResultCollector is a SynchronizedObject. Its operations are mutex-protected and
thread-safe.

TestResultCollector belongs to the namespace CppUnit. It is declared in TestResult-
Collector.h and implemented in TestResultCollector.cpp.

TestResultCollector

#m_failures: Testfailures
#m_testErrors:int
#m_tests: Tests

+TestResultCollector(in syncObject: SynchronizationObject)
+~TestResultCollector()

+addFailure(in failure: TestFailure)
+failures(): TestFailures

+reset()

+runTests():int

+startTest(in test: Test)

+testErrors():int

+testFailures():int

+testFailuresTotal(): int

+tests(): Tests

—TestResultCollector(in other: TestResultCollector)
—operator=(in other:TestResultCollector)

Figure C-27. The class TestResultCollector

168 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration

class TestResultCollector : public TestSucesslListener

Constructors/Destructors
TestResultCollector(SynchronizationObject *syncObject = 0)
A constructor. If a SynchronizationObject is not provided, a new one is created.

virtual ~TestResultCollector()
A destructor.

Public Methods
void addFailure(const TestFailure &failure)
A method that informs TestResultCollector of a TestFailure.

virtual const TestFailures& failures() const
Returns m_failures, the TestFailure objects collected by this TestResultCollector.

virtual void reset()
Clears the collected results.

virtual int runTests() const
Returns the number of Test objects run.

void startTest(Test *test)
A method that informs TestResultCollector that test is about to be run.

virtual int testErrors() const
Returns the number of test errors collected.

virtual int testFailures() const
Returns the number of test failures collected.

virtual int testFailuresTotal() const
Returns the total number of test failures and errors collected.

virtual const Tests &tests() const
Returns m_tests, the Test objects collected by this TestResultCollector.

Protected/Private Methods
TestResultCollector(const TestResultCollector &other)
A copy constructor declared private to prevent its use.

TestResultCollector8 operator=(const TestResultCollector &other)
A copy operator declared private to prevent its use.

Attributes
typedef deque<TestFailure *> TestFailures
Defines the type TestFailures as a deque of TestFailure objects (public).

typedef deque<Test *> Tests
Defines the type Tests as a deque of Test objects (public).

TestResultCollector | 169

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFailures m failures

The collected failures (protected).
int m_testErrors

The number of errors (protected).

Tests m_tests
The collected Test objects (protected).

TestRunner

Description

The class TestRunner (see Figure C-28) provides the user interface to run tests and output
the results. CppUnit includes three versions of TestRunner: a text version, a Qt GUI
version, and an MFC GUI version. The text version is summarized here, since it is the most
generic. The usage of the other two versions is similar.

The code sample below demonstrates using TestRunner to run BookTest and print the
results. A TestSuite containing multiple Test objects can be run the same way.

TestRunner runner;

runner.addTest(BookTest);

runner.run();
The text TestRunner belongs to the namespace CppUnit::TextUi. It is declared in the file ui/
text/TestRunner.h and implemented in the file TestRunner.cpp.

TestRunner

#m_eventManager:TestResult
#m_outputter: Qutputter
#m_result: TestResultCollector
#m_suite: TestSuite

+TestRunner(in outputter: Outputter)

+~TestRunner()

+addTest(in test: Test)

+eventManager():TestResult

+result():TestResultCollector

+run(in testName: string, in doWait: bool, in doPrintResult: bool, in doPrintProgress: bool): bool
+setOutputter(in outputter: Outputter)

#findTestByName(in name: string): Test

#printResult(in doPrintResult: bool)

#runTest(in test: Test, in doPrintProgress: bool): bool
#runTestByName(in testName:string, in printProgress: bool): bool
#wait(in doWait: bool)

Figure C-28. The text version of TestRunner

Declaration

class TestRunner

170 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Constructors/Destructors

TestRunner(Outputter *outputter = NULL)
Constructs a TestRunner. If no Outputter is provided, a TextOutputter that prints to
stdout is created.

virtual ~TestRunner()
A destructor.

Public Methods

void addTest(Test *test)
Adds a Test to this TestRunner. Multiple Test objects may be added.

TestResult 8eventManager() const
Returns the TestResult for this TestRunner. Additional TestlListener objects can be
added to the TestResult to obtain test progress and results notifications.

TestResultCollector &result() const
Returns the TestResultCollector containing the results of the Test objects that were
run.

bool run(string testName = "", bool doWait = false, bool doPrintResult = true, bool
doPrintProgress = true)
Runs the Test specified by testName. If no testName is given, runs all the added Test
objects. If doWait is TRUE, the user must press Return to start the run. If doPrintResult
is TRUE, the test result summary is printed. If doPrintProgress is TRUE, a progress indi-
cator is printed as the tests are run.

void setOutputter(Outputter *outputter)
Sets the Outputter object. Allows a custom Outputter to be used to output test results.
The default Outputter is a TextOutputter.

Protected/Private Methods

virtual Test *findTestByName(string name) const
A protected method returning the Test with the given name, or NULL if it is not
found.

virtual void printResult(bool doPrintResult)
A protected method that calls the Outputter’s write() method if doPrintResult is
TRUE.

virtual bool runTest(Test *test, bool doPrintProgress)
A protected method that runs a Test. If doPrintProgress is TRUE, a TextTest-
ProgressListener is used to print a progress indicator.

virtual bool runTestByName(string testName, bool printProgress)
A protected method that calls findTestByName() to get the named Test and calls
runTest() to run to run the named Test.

virtual void wait(bool doWait)
A pprotected method that waits for user input if doWait is TRUE.

TestRunner | 171

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Attributes

TestResult *m_eventManager
The TestResult that receives the results of Test objects run by this TestRunner
(protected).
Outputter *m outputter
The Outputter that outputs test results for this TestRunner (protected).
TestResultCollector *m result
The TestResultCollector where the test results for this TestRunner are stored
(protected).
TestSuite *m suite
The TestSuite to which addTest () adds Test objects (protected).

TestSetUp

Description

The class TestSetUp (see Figure C-29) is a subclass of TestDecorator that implements
setUp() and tearDown() methods for the decorated Test. This allows the Test object’s test
fixture behavior to be modified without subclassing it.

TestSetUp belongs to the namespace CppUnit. It is declared in the file extensions/TestSetUp.h
and implemented in the file TestSetUp.cpp.

TestSetUp

+TestSetUp(in test: Test)
+run(in result: TestResult)
#setUp()

#tearDown()

—TestSetUp(in other:TestSetUp)
—operator=(in other:TestSetUp)

Figure C-29. The class TestSetUp

Declaration
class TestSetUp : public TestDecorator

Constructors/Destructors

TestSetUp(Test *test)
A constructor taking the Test to decorate.

Public Methods

void run(TestResult *result)
Calls setUp(), runs the decorated Test, and calls tearDown().

172 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Protected/Private Methods

virtual void setUp()
A Protected method called prior to running the decorated Test, allowing custom test
fixture behavior to be implemented.

virtual void tearDown()
A Protected method called after running the decorated Test, allowing the test fixture
to be cleaned up.

TestSetUp(const TestSetUp &)
A copy constructor declared private to prevent its use.

void operator=(const TestSetUp &)
A copy operator declared private to prevent its use.

Attributes

None.

TestSucessListener

Description

The class TestSucessListener (see Figure C-30) is a subclass of TestListener and
SynchronizedObject. It indicates whether the Test it observes has succeeded. If the
TestResult includes a failure, the Test is not successful.

TestSucessListener belongs to the namespace Cppunit. It is declared in the file
TestSucessListener.h and implemented in the file TestSucessListener.cpp.

TestSucessListener

—m_success: bool

+TestSucessListener(in syncObject: SynchronizationObject)
+~TestSucessListener()

+addeFailure(in failure: TestFailure)

+reset()

+wasSuccessful(): bool

Figure C-30. The class TestSucessListener

Declaration

class TestSucessListener : public TestlListener, public SynchronizedObject

Constructors/Destructors
TestSucessListener(SynchronizationObject *syncObject = 0)
A constructor. If syncObject is null, a new SynchronizationObject is created.

virtual ~TestSucesslListener()
A destructor.

TestSucessListener | 173

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

void addFailure(const TestFailure &failure)
A method to report a TestFailure to the TestSucessListener. Sets m_sucess to FALSE.

virtual void reset()
Resets m_sucess to TRUE.

virtual bool wasSuccessful() const
Returns value of m_sucess.

Protected/Private Methods

None.

Attributes

bool m sucess
A test success indicator; TRUE unless there is a failure (private).

TestSuite

Description

The class TestSuite (see Figure C-31) implements the interface Test. It is a composite of
Test objects. Since the contained Test objects may be instances of TestCase, TestSuite, or
any other subclass of Test, this allows hierarchies of Test classes to be assembled and run
as a unit. A TestSuite is run just like a TestCase: by calling its run() method and passing in
a TestResult to receive the results. The TestSuite then sequentially runs the Test objects it
contains.

A TestSuite takes ownership of all Test objects added to it and deletes them in its
destructor.

TestSuite belongs to the namespace CppUnit. It is declared in the file TestSuite.h and imple-
mented in the file TestSuite.cpp.

TestSuite

—m_name:string
—m_tests: vector

+TestSuite(in name:string)
+~TestSuite()

+addTest(in test: Test)
+countTestCases():int
+deleteContents()
+getName():string
+getTests(): vector

+run(in result: TestResult)
+toString():string
—TestSuite(in other:TestSuite)
—operator=(in other:TestSuite)

Figure C-31. The class TestSuite

174 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Declaration
class TestSuite : public Test

Constructors/Destructors
TestSuite(string name = "")
Constructs a TestSuite, optionally giving it a name.

virtual ~TestSuite()
A destructor. Deletes all the contained Test objects.

Public Methods
void addTest(Test *test)
Adds a Test to this TestSuite.

int countTestCases() const
Returns the total number of TestCase objects to be run by this TestSuite, by recur-
sively calling countTestCases() on all the contained Test objects.

virtual void deleteContents()
Deletes all the contained Test objects.

string getName() const
Returns the name of this TestSuite.

const vector<Test *> &getTests() const
Returns the collection of contained Test objects.

void run(TestResult *result)
Runs the Test objects and receives the results in result.

string toString() const
Returns a string representation of this TestSuite.

Protected/Private Methods
TestSuite(const TestSuite &other)
A copy constructor declared private to prevent its use.

TestSuited operator=(const TestSuite &other)
A copy operator declared private to prevent its use.

Attributes
const string m_name
The name of this TestSuite. May be empty (private).

vector<Test *> m_tests
The collection of Test objects belonging to this TestSuite (private).

TestSuite | 175

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestSuiteBuilder

Description

The template class TestSuiteBuilder (see Figure C-32) is a helper class used to add tests to
a TestSuite. It is used by the macros CPPUNIT TEST SUITE() and CPPUNIT TEST SUITE END().

TestSuiteBuilder belongs to the namespace CppUnit. It is declared and implemented in the
file extensions/TestSuiteBuilder.h.

© Fixture

TestSuiteBuilder

—m_suite:auto_ptr

+TestSuiteBuilder(in suite:TestSuite)

+TestSuiteBuider(in name:string)

+addTest(in test: Test)

+addTestCaller(in methodName: string, in testMethod: TestMethod)
+addTestCaller(in methodName: string, in testMethod: TestMethod, in fixture: Fixture)
+addTestCallerForException(in methodName:string, in testMethod: TestMethod, in fixture: Fixture, in dummyPointer: ExceptionType)
+makeTestName(in methodName: string)

+suite()

+takeSuite():TestSuite

—TestSuite(in other:TestSuite)

—operator=(in other:TestSuite)

Figure C-32. The template class TestSuiteBuilder

Declaration

template<typename Fixture> class TestSuiteBuilder

Constructors/Destructors

TestSuiteBuilder(TestSuite *suite)
Constructs a TestSuiteBuilder for a TestSuite.
TestSuiteBuilder(string name)
Constructs a TestSuiteBuilder and a new TestSuite with the given name.

Public Methods

void addTest(Test *test)
Adds test to the TestSuite.
void addTestCaller(string methodName, TestMethod testMethod)
Adds a TestCaller that calls the TestMethod.
void addTestCaller(string methodName, TestMethod testMethod, Fixture *fixture)
Adds a TestCaller that calls the TestMethod in the context of the Fixture.
template<typename ExceptionType>
void addTestCallerForException(string methodName, TestMethod testMethod, Fixture
*fixture, ExceptionType *dummyPointer)
A template function to add a TestCaller that calls the TestMethod in the context of the
Fixture. The TestMethod is expected to throw an Exception of type ExceptionType.

176 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

string makeTestName(const string &methodName)
Returns a test name that incorporates the TestSuite name and methodName.

TestSuite *suite() const
Returns the TestSuite for this TestSuiteBuilder.

TestSuite *takeSuite()
Takes ownership of the TestSuite from the smart pointer m_suite.

Protected/Private Methods

TestSuite(const TestSuite &other)
A copy constructor declared private to prevent its use.

TestSuited operator=(const TestSuite &other)
A copy operator declared private to prevent its use.

Attributes

std::auto_ptr<TestSuite> m_suite
A smart pointer to the TestSuite for this TestSuiteBuilder (private).

TestSuiteFactory

Description

The template class TestSuiteFactory (see Figure C-33) implements the TestFactory method
makeTest () for a TestFixture having a static suite() method. TestSuiteFactory is used by
the class AutoRegisterSuite.

TestSuiteFactory belongs to the namespace CppUnit. It is declared and implemented in the
file extensions/TestSuiteFactory.h.

———— TestCaseType |
TestCaseFactory ' [~~~ """ "

+makeTest(): Test

Figure C-33. The template class TestSuiteFactory

Declaration

template<typename TestCaseType>
class TestSuiteFactory : public TestFactory

Constructors/Destructors

None.

Public Methods

virtual Test *makeTest()
Calls the method TestCaseType: :suite() to return a TestSuite.

TestSuiteFactory | 177

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Protected/Private Methods

None.

Attributes

None.

TextOutputter

Description

The class TextOutputter (see Figure C-34) is a subclass of Outputter. It gets test results from
a TestResultCollector and outputs them in text format to an output stream.

TextOutputter belongs to the namespace CppUnit. It is declared in TextOutputter.h and
implemented in TextOutputter.cpp.

TextOutputter

—m_result: TestResultCollector
—m_stream: ostream

+TextOutputter(in result: TestResultCollector, in stream: ostream)
+~TextOutputter

+printFailure(in failure:TestFailure, in failureNumber:int)
+printFailureDetail(in thrownException: Exception)
+printFailureListMark(in failureNumber:int)
+printfailureLocation(in sourceLine: SourceLine)
+printFailures()

+printFailureTestName(in failure: TestFailure)
+printFailureType(in failure: TestFailure)
+printFailureWarning()

+pringHeader()

+printStatistics()

+write()

—TextOutputter(in copy: TextOutputter)

—operator=(in copy: TextOutputter)

Figure C-34. The class TextOutputter

Declaration
class TextOutputter : public Outputter

Constructors/Destructors
TextOutputter(TestResultCollector *result, ostreamd stream)
Creates a TextOutputter to get test results from result and output them to stream.

virtual ~TextOutputter()
A destructor.

178 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Public Methods

virtual void printFailure(TestFailure *failure, int failureNumber)
virtual void printFailureDetail (Exception *thrownException)
virtual void printFailurelistMark(int failureNumber)
virtual void printFailurelocation(SourcelLine sourceline)
virtual void printFailures()
virtual void printFailureTestName(TestFailure *failure)
virtual void printFailureType(TestFailure *failure)
virtual void printFailureWarning()
virtual void printHeader()
virtual void printStatistics()
Methods that print various portions of the test results to m_stream. Generally, the
write() method is called instead of calling these methods directly.

void write()
A method called to output results. Calls printHeader() and printFailures().

Protected/Private Methods
TextOutputter(const TextOutputterd copy)
A copy constructor, scoped private to prevent its use.

void operator=(const TextOutputter& copy)
A copy operator, scoped private to prevent its use.

Attributes
TestResultCollector *m result
The TestResultCollector passed in the constructor. (private)

ostreamd m_stream
The output stream passed in the constructor. (private)

TextTestProgressListener

Description

The class TextTestProgressListener (see Figure C-35) is a subclass of TestListener. It
prints a textual “progress bar” indicating the progress of a series of tests as they are run. A
sample of its output is shown here:

el Flll B
This shows that 10 tests were run, and 1 failure and 1 error occurred.

TextTestProgressListener belongs to the namespace Cppunit. It is declared in
TextTestProgressListener.h and implemented in TextTestProgressListener.cpp.

Declaration

class TextTestProgressListener : public TestlListener

TextTestProgressListener | 179

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TextTestProgressListener

+TextTestProgressListener()

+~TextTestProgressListener()

+addFailure(in failure: TestFailure)

+done()

+startTest(in test:Test)

—TextTestProgressListener(in copy: TextTestProgressListener)
—operator=(in copy:TextTestProgressListener)

Figure C-35. The class TextTestProgressListener

Constructors/Destructors
TextTestProgressListener()
A constructor.

virtual ~TextTestProgressListener()
A destructor.

Public Methods

void addFailure(const TestFailure &failure)
A method that informs TextTestProgressListener of a TestFailure. If the TestFailure
is an assertion failure, an F is printed; otherwise, an E is printed.

void done()
Prints a carriage return and flushes the output stream to complete the output.

void startTest(Test *test)
A method that informs TextTestProgressListener that a Test is about to be run. A
period (.) is printed to indicate progress.

Protected/Private Methods

TextTestProgressListener(const TextTestProgressListener& copy)
A copy constructor, scoped private to prevent its use.

void operator=(const TextTestProgressListenerd copy)
A copy operator, scoped private to prevent its use.

Attributes

None.

TextTestResult

Description

This class is deprecated and should not be used. The classes TextTestProgressListener and
TextOutputter replace it.

TextTestResult is declared in TextTestResult.h and implemented in TextTestResult.cpp.

180 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

XmlQutputter

Description

The class XmlOutputter (see Figure C-36) is a subclass of Outputter. It gets test results from
a TestResultCollector and outputs them in XML format to an output stream. The write()
method is called to produce the output, rather than calling the other output methods
directly.

XmlOutputter defines a nested class named Node representing an XML node.

XmlOutputter belongs to the namespace CppUnit. It is declared in XmlOutputter.h and
implemented in XmlOutputter.cpp.

XmlOQutputter

—m_encoding: string
—m_result: TestResultCollector
—m_stream: ostream

+XmlOutputter(in result: TestResultCollector, in stream: ostream, in encoding: string)
+~XmlOutputter()

+addFailedTest(in test: Test, in failure: TestFailure, in testNumber:int, in testsNode: Node)
+addFailedTests(in failedTests: FailedTests, in rootNode: Node)
+addFailureLocation(in failure: TestFailure, in testNode: Node)

+addStatistics(in rootNode: Node)

+addSuccessfulTest(in test: Test, in testNumber: int, in testsNode: Node)
+addSuccessfulTests(in failedTests: FailedTests, in rootNode: Node)
+makeRootNode():Node

+writeProlog()

+write()

#fillFailedTestsMap(in failedTests: FailedTests)

—XmlOutputter(in copy: XmlOutputter)

—operator=(in copy: XmlQOutputter)

Figure C-36. The class XmlOutputter

Declaration
class XmlOutputter : public Outputter

Constructors/Destructors
XmlOutputter(TestResultCollector *result, ostream &stream, string encoding = "ISO-
8859-1")
Constructs an XmlOutputter to get test results from result and output them to stream.
The default encoding is ASCII, also known as Latin-1 or ISO 8859-1.

virtual ~XmlOutputter()
A destructor.

Public Methods

virtual void addFailedTest(Test *test, TestFailure *failure, int testNumber, Node
*testsNode)
Creates an XML node representing the test failure and adds it to testsNode. Also calls
addFailurelocation() if the test failure has a valid SourceLine.

XmlOutputter | 181

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

virtual void addFailedTests(FailedTests &failedTests, Node *rootNode)
Adds the test failures from failedTests to rootNode using addFailedTest().
virtual void addFailurelocation(TestFailure *failure, Node *testNode)
Creates an XML node representing the test failure location and adds it to testNode.
virtual void addStatistics(Node *rootNode)
Creates an XML node containing the number of tests, number of failures, and number
of errors, and adds it to rootNode.
virtual void addSucessfulTest(Test *test, int testNumber, Node *testsNode)
Creates an XML node representing a test success and adds it to testsNode.
virtual void addSucessfulTests(FailedTests &failedTests, Node *rootNode)
Adds the successful tests from the TestResultCollector to rootNode using
addSucessfulTest().
virtual Node *makeRootNode()
Creates a Node and adds the test results to it using addFailedTests(),
addSucessfulTests(), and addStatistics().
virtual void writeProlog()
A method that writes the XML prolog (header), which includes the XML version (1.0)
and the encoding type.
virtual void writeTestsResult()
A method that writes the body of the XML document. Calls makeRootNode() and writes
the resulting Node to the output stream as a string.
void write()
Method called to write the test results to the output stream as an XML document.
Calls writeProlog() and writeTestsResult().

Protected/Private Methods

virtual void fillFailedTestsMap(FailedTests &failedTests)
A protected method to get the test failures from the TestResultCollector and add
them to failedTests.

XmlOutputter(const XmlOutputterd& copy)
A copy constructor, scoped private to prevent its use.

void operator=(const XmlOutputter& copy)
A copy operator, scoped private to prevent its use.

Attributes
typedef map<Test *,TestFailure*> FailedTests

Defines the type FailedTests as a map of Test objects to TestFailure objects.
string m_encoding

The encoding type to be written in the XML prolog (private).
TestResultCollector *m result

The TestResultCollector passed in the constructor (private).

ostreamd m stream
The output stream passed in the constructor (private).

182 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

XmlOutputter::Node

Description

The class XmlOutputter: :Node (see Figure C-37) is a nested class belonging to XmlOutputter.
It represents a node in an XML document.

XmlOutputter: :Node is declared in XmlOutputter.h and implemented in XmlOutputter.cpp.

XmlOutputter::Node

—m_attributes: Attributes
—m_content:string
—m_name:string
—m_nodes: Nodes

+Node(in elementName: string, in content: string)

+Node(in elementName: string, in numericContent: int)
+~Node()

+addAttribute(in attributeName: string, in numericValue:int)
+addAttribute(in attributeName: string, in value: string)
+addNode(in node: Node)

+toString(): string

—asString(in value:int): string

—attributesAsString(): string

+escape(in value:string): string

Figure C-37. The nested class XmlOutputter::Node

Declaration

class Node

Constructors/Destructors

Node(string elementName, string content ="")

Constructs a Node with the given element name and a string value as content.
Node(string elementName, int numericContent)

Constructs a Node with the given element name and a numeric value as content.
virtual ~Node()

A destructor.

Public Methods
void addAttribute(string attributeName, int numericValue)
Adds an XML attribute with a numeric value to this Node.
void addAttribute(string attributeName, string value)
Adds an XML attribute with a string value to this Node.
void addNode(Node *node)
Adds a child Node to this Node.
string toString() const
Returns the XML-formatted string representation of this Node.

XmlOutputter::Node | 183

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Protected/Private Methods

static string asString(int value)
A Static method that returns a string containing value (private).
string attributesAsString() const
Returns this Node’s attributes as a string for XML output. (private).
string escape(string value) const
Returns value with certain characters replaced with their XML escaped equivalents.
Characters that will be replaced include “<”, “>”, “&”, and quote symbols (private).

Attributes

typedef std::pair<string,string> Attribute

Defines the type Attribute as a pair of strings (private).
typedef deque<Attribute> Attributes

Defines the type Attributes as a deque of Attribute (private).
typedef deque<Node *> Nodes

Defines the type Nodes as a deque of Node (private).
Attributes m attributes

This Node’s attributes (private).
string m_content

The content of this Node (private).
string m_name

The name of this Node (private).
Nodes m_nodes

The child Nodes of this Node (private).

184 | AppendixC: CppUnit Class Reference

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

abstract
A class is abstract when it cannot be
instantiated and so only may be used as a
parent class.

Abstract Window Toolkit (AWT)
Java tools for building GUIs.

American Standard Code for Information Interchange
(ASClN)
A standard, 8-bit character set containing
127 characters. Also known as Latin-1 and
ISO 8859-1.

Application Program Interface (API)
A generic term for a set of software inter-
faces exposed by a package or standard.
For example, DOM is a standard API for
accessing document contents.

assert
A method or macro that tests a condition
and reports an error if the result is false.

attribute
A variable or constant belonging to a
class, representing part of its state. (In
.NET, an attribute is metadata containing
descriptive declarations and attached to a
code element such as a class or method.)

behavior
The results of running code. More for-
mally, how data changes state over time.

black box test
A test that does not have access to the
internals of the object being tested. Also
known as a “functional test.”

Glossary

coupling
See “test coupling.”

Document Object Model (DOM)
A W3C-defined standard interface for

document access.

error
In unit testing, an unexpected exception.
See “failure.”

exception
An error object that is thrown when a
software fault occurs.

failure
In unit testing, the result of a test when a
test condition does not pass. Failures are
expected exceptions. See “error.”

fixture
See “test fixture.”

functional test
See “black box test.”

GNU
GNU’s Not Unix, a popular free operat-
ing system and associated tools.

green bar
When all unit tests pass.

aul
Graphical User Interface.

IDE

Integrated Development Environment.

interface
In object-oriented (OO) design, a set of
abstract methods that descendant classes
will implement (sometimes encapsulated
in an abstract class).

185

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

isolation

isolation
Tests that do not depend on the result of
any other test are isolated. See also “test
coupling.”

iteration
A software development cycle. Iterations
start with a set of stories and finish with
working software that implements those
stories.

Java APl for XML Processing (JAXP)
Java’s generic interface for parsing and
transforming XML documents. It is imple-
mented by numerous different XML tools,
including Crimson, Xerces, and Xalan. It

incorporates other industry standard APIs
such as DOM and SAX.

macro
A command embedded in code that is exe-
cuted by the compiler prior to compiling
the code.

member
A method or attribute belonging to a
class.

method
A function belonging to a class.

Microsoft Foundation Classes (MFC)
A set of standard C++ classes for building
Microsoft Windows applications.

mock object
A simulation of a real object that imple-
ments its interface and validates its inter-
action with other objects.

MUTual EXclusion object (mutex)
A mechanism that may be locked and
unlocked to protect a synchronized
object.

nested class
A class defined within another class.

object
An element of code structured as a class.

Object Oriented (00)
Code structured with classes.

pair programing
Developers writing code in teams of two, a
common XP practice.

private
A class member that is only accessible by
the owning class.

production class
An object that will be included in the
delivered software product. See “test
class.”

protected
A class member with access limited to the
owning class, child classes, and friend
classes.

public
A class member that any other class can
access.

pure virtual
A method with no implementation that
must be overridden in a subclass.

Quality assurance (QA)
Formal verification of software by both
automated and manual testing.

Qt
A cross-platform C++ GUI development
framework.

red bar
When one or more unit tests fail.

refactoring
The process of transforming code to
improve its internal design without chang-
ing its external functionality. More suc-
cinctly, a behavior-preserving transforma
tion.

reflection
Reading the structure of a class at
runtime.

Simple API for XML (SAX)
An older standard interface for XML
handling.

singleton
An object that has one, and only one, glo-
bal instance.

structural test
See “white box test.”

success
In unit testing, the result of a test when all
test conditions pass.

186 | Glossary

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896
Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from

the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Swing

Java tools for GUI building, a later exten-

sion of AWT.
DD

Test Driven Development.

template

In C++, a parameterized class. Must be
specialized for a particular data type to be

instantiated.

test class

Object implementing unit test(s). Gener-
ally not included in the software product.

See “production class.”

test coupling

Tests that depend on the results of
another test are coupled. See “isolation.”

test fixture

A unit test containing objects that are
shared by two or more test methods.

test method

A test function within a test class that pro-
duces a result of either success or failure.

Transformation APl for XML (TrAX)

The API for XML document transforma-
tion included within JAXP.

ul

User interface.
Unified Modeling Language (UML)

XsL

unit test
A test of a software component or behav-
ior.

unit test framework
A software tool that supports writing and
running unit tests.

virtual
A method that is meant to be overridden.
See also “pure virtual.”

World Wide Web Consortium (W3()
An organization that defines web-related
specifications, guidelines, software, and
tools such as XML and HTML.

white box test
A test that has access to the internals of
the object being tested. Also known as a
“structural test.”

Extensible Markup Language (XML)
A metalanguage for defining customized
markup formats for documents.

XP

Extreme Programming.

XPath
A W3C Recommendation specifying a
standard path language for querying and
manipulating XML documents.

XSL
A set of recommendations for defining
XML document transformation and pre-

A standard language for documenting and

modeling software architecture. sentation.

Uniform Resource Locator (URL)
A string describing the location and access
method of a network resource—for exam-
ple, http://www.oreilly.com.

Glossary | 187

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

A

abstract classes
definition of, 185
TestCase, 65
writing unit tests for, 44—46
Abstract Window Toolkit (AWT), 185
AbstractDBConnectionTestCase class
(example), 45
AbstractNodeTester class, 105
AbstractTest class, 44—46
BaseViewTestCase subclass, 60
naming convention for classes, 45
acceptance tests, 2
accessor functions, 10
actionPerformed(), 57
add() (AddBook example class), 54, 57
Add button, testing for Library GUI, 56
addBook() (Library class example), 54
AddBook class (example), 52
add(), 57
executable class that creates dialog, 57
improving layout of Add Book dialog, 58
initial unit test for, 54
initial version of, 54
AddBookTest class (example), 54
AddBookView class (example), 53
Add button functionality, 57
addControls() with improved layout
code, 58
initial version of, 55
AddBookViewTest class (example), 54
implemented as subclass of
BaseViewTestCase, 61
test of the Add button, 56

Index

addChild() (XMLElement), 101
addTest(), 29
TestSuite class, 93
aggregating multiple tests (see TestSuite
class)
agile development, ix
Test Driven Development (TDD), 2
American Standard Code for Information
Interchange (ASCII), 185
Apache Crimson XML parser, 98
Apple Safari browser, performance testing
of, 47
application example (see library application)
Application Program Interface (API), 185
AreEqual() (Assert), 82
ASCII, 185
assert_(), 91
Assert class, 122-124
AreEqual() and IsNull(), 82
test assert methods, listing of, 86
assert functions, 33
ASSERT macros, 5
assertDoubleEquals(), 70
assertEqual(), 89
assertEquals(), 33
comparing Book objects, 34
comparing the values of two
arguments, 68
CppUnit, 70
Asserter namespace (CppUnit), 70
AssertionFailedError class, 124
assertion_traits template, 137
assertNodeTestPasses(), 105

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

189

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

asserts BookTest class (example), 9, 20

custom, defining, 34 C++ version, 115

definition of, 185 classes interacted with, 31

excessive number in a test method, 36 CppUnit, testing Book class, 72

with a message, 33, 68, 79 implemented as a test fixture, 74

plain, 32 NUnit, 81

test method containing several (testing run by text TestRunner in CppUnit, 75

single behavior), 35 running by adding main(), 21
test method with many (testing multiple running with TextTestRunner, 22
behaviors), 35 BookTests class (example)

(see also test assert methods) building with multiple test methods, 90
assertTrue(), 21, 34, 67,114 failure of, 90

UnitTest class, 9 PyUnit, 89
assertXMLEqual(), 99 business layer, GUI applications, 53
assertXMLIdentical(), 100
assertXMLValid(), 102 C
assertXpathExists(), 106
assertXpathsEqual(), 106 CHt . .
assertXpathsNotEqual(), 106 accessing plTotected mterfgces, 39
attributes port of JUnit (see CppUnit)

C#. 80 templates, 187

unit test framework, 113-121
creating a Book, 113-117
creating a Library, 117-120

wxWindows GUI toolkit, 51

combining in NUnit, 84
definition of, 185
public vs. private, 10
attribution for material from this book, xi

AutoRegisterSuite class, 138 C language . ,
AWT (Abstract Window Toolkit), 185 mgcros‘used n Cpp Uan, 70
AWT TestRunner, 22 MinUnit version of xUnit, 19
C# language
attributes, 80
B garbage collection, 82
Bacon, Tim, 98 NUnitForms, 19
BaseView class, 60 Cactus, 19
BaseViewTestCase class (example), 60 child elements, XML, 100
AddBookViewTest implemented as class architecture, junit.framework
subclass, 61 package, 64
Beck, Kent, xii, 18 class diagram for basic unit test
behavior, 185 framework, 13
black box tests, 2, 185 class members, 186
Book class (example), 10 class methods, 186
author attribute added, 74 close() (DBConnection), 45
author attribute and accessor function command line, running PyUnit tests
getAuthor(), 23 from, 89
C# version, 85 Common Public License, 63
constructor modified to throw ComparisonFailure class, 125
exception, 77 CompilerOutputter class, 139
CppUnit unit tests of, 72 compilers
with private title attribute and getTitle() C++, 113
function, 21 Java, 7
PyUnit, 89 connect() (DBConnection), 45
title attribute set by constructor, 12, 116 console test runner, for NUnit tests, 84
used in LibraryPerfTest, 49
190 | Index

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

constructors
modified to throw exception (Book class
example), 77
setting class attribute in, 12, 116
controls, adding to view object and
improving layout, 58
coupling (see test coupling)
CppUnit, 18, 70-79
architecture
classes, 70
classes to collect test results, 71
namespaces, 71
Outputter classes to print test
results, 71
Test classes, 71
TestRunner, versions of, 72
class reference, 137-184
test assert methods, 79
web site information on, 70
writing unit tests, 72-79
helper macros, using, 77
implementing as test fixtures, 74
TestSuite, creating, 76
CppUnit namespace, 70
CPPUNIT_ASSERT(), 73
CPPUNIT_ASSERT_EQUALC(), 75,137
CPPUNIT_TEST(), 77
CPPUNIT_TEST_EXCEPTION(), 77
CPPUNIT_TEST_FAILURE(), 78
CPPUNIT_TEST_SUITE(), 77
CPPUNIT_TEST_SUITE_END(), 77
CPPUNIT_TEST_SUITE_NAMED_
REGISTRATION(), 79, 138
CPPUNIT_TEST_SUITE_
REGISTRATION(), 78,138
Craig, Philip, 80
CreateAddBook class (example), 57
Crimson XML parser (Apache), 98
Cunningham, Ward, xii
currentTimeMillis(), 48

D

databases (as mock objects), 42
DBConnection interface, 42
AbstractTest for, 44
deallocating objects, 26, 82
debugging, unit tests for, 4
dialog boxes (see humble dialogs)
dict() (Python dictionary object), 92
Diff class, 106
similar(), 100
doClick() (JButton), 56

DOCTYPE definition, 102

Document interface, 106

Document Object Model (DOM), 185

DocumentBuilder parser, 104

DocumentTraversal interface, 98, 104

document-view model, GUI objects, 53

DTD (Document Type Definition), 102
LibraryXMLDoc class (example), 102

E

EasyMock, 44
EJBs, unit testing with Cactus, 19
empty elements, XML, 97
representaton of, 99
environment variable $PYTHONPATH, 89
errors in unit testing, 185
collection by TestResult, 30
failures vs., 11
testing expected errors, 37
NUnit, 84
event handling, GUIs
placing in the view, 56
typical method in a class implementing a
dialog window, 51
unit testing of handlers, 52
Exception class, 141
exceptions, 11,185
CPPUNIT_TEST_EXCEPTION()
macro, 77
expected, thrown by NUnit test
methods, 84
thrown by PyUnit tests, 92
unit test that fails when exception is
thrown, 37
Exception:: Type class, 142
ExclusiveZone class, 152
ExpectedException attribute, 84
ExpectedExceptionTraits class, 143
Extensible Markup Language (see XML)
Extreme Programming (XP), xii
Test Driven Development (TDD), 2

F

fail(), 37
failUnlessRaises() test assert method, 92
failure of unit tests, 185

CH++ tests, 114

collection by TestResult, 30

CppUnit, 73,76

macro adding expected failure to test
suite, 78

Index | 191

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

failure of unit tests (continued) humble dialogs, 52

errors vs., 11 AddBookView (example), 56
message describing, 68,79 design of GUI object code, 52
NUnit test assert methods, 86
PUnit, reporting on, 90 |
reported for a plain assert method, 32

Feathers, Michael, 52, 70 IDE (Integrated Development

Forms applications (Windows), GUI tests Environment), 7,185
of, 19 Ignore attribute, 84

interdependencies of coupled tests (see test
coupling)

interfaces, 185

invoke() (Reflection API method), 40

functional, 2
functional tests (see black box tests)

G 1sNull() (Assert), 82

Gamma, Erich, xii, 18 isolation of unit tests, 26-28, 37, 186
garbage collection, 26, 82 provided by calling setUp() and
gcj Java compiler (GNU), 7 tearDown() for each test
get() (Reflection API method), 40 method, 65
getBaseView(), 62 isOpen() (DBConnection), 44
getConnection() iteration, 186

DBConnection class, 45
JDBCConnectionTest class (example), 46 J
getDeclaredFields(), 40

getDeclaredMethods(), 40 Java . . 39
getNumSuccess() (UnitTest), 14, 118 alccess p}rlotgcztlon, overcoming,

get/set methods, not testing, 38 classpath, _

GNU, 185 JAXP (Java API for XML Processing), 98,

186
object-oriented features, 63
organization of production and test
code, 41
runtime environment and compiler, 7

g++ compiler, 113

gcj Java compiler, 7

Lesser General Public License, 70
green bar, 24, 185

GUI licati
spﬁipiriii ;OrZ:entation and business Swing GUI toolkit, 51
XPath and XSL operations, 98
layers, 53

(see also JUnirt)
javac compiler, 7
JButton class, doClick(), 56
JDBCConnection class, 46
JDBCConnectionTest class, 46
Jeffries, Ron, xii
Jester, 20

standard toolkits for building, 51
unit testing, 51-62
Library GUI (example), 53-62
GUI (Graphical User Interface), 185
GUI objects, 51
humble dialog approach to testing, 52

GUI TestRunner ,
included in most xUnits, 24 JFrame clg ss (Swing), 55
Unit, 67 BaseView subclass, 60
NUnit, 84 show(), 56
PyUnit, 95 jMock, 44 . .
GUI tests of Windows Forms JSPs, JUnit extension for testing (Cactus), 19

JUnit, ix, xii, 18, 63-69

applications, 19 architecture of, 63

classes in junit.framework package, 64
H kages, 64
packages,
Hashtable, using in Library (example) to Cactus extension, 19
store Books, 48 class reference, 122-136
HTMLUnit, 19 HTMULUnit extension, 19
192 | Index

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

HTTPUnit extension, 19
Jester extension, 20
JFCUnit extension, 19
JUnitaddons extension, 39
JUnitPerf extension, 19
test assert methods, 67
TestRunner classes, 22
using, 65—67
aggregating tests with TestSuite, 66
test assert methods, 65
test classes, 65
TestRunner tools, 66
web site information on, 63
XMLUnit extension (see XMLUnit)

L

Lacoste, Jerome, 70
layout
controls in GUI view object, 58
not testing layout code, 59
library application (example), 8-17
creating a book, 8-12
creating a unit test, 9
setting up unit test framework, 8
creating a library, 12-17
GUI for, test driven development
of, 53-62
organization of production and test
code, 41
Library class (example)
adding/retrieving a book and getting
number of books, 25
basic implementation, 15
C++
changed to pass LibraryTest, 119
initial version, 119
C# version, 86
changed to pass LibraryTest, 15
Hashtable used to store Books, 49
initial unit test for (LibraryTest), 13
PyUnit version, 91
removeBook(), using a plain assert, 32
LibraryDBTest class (example), 43
LibraryFrame class (example), 60
LibraryNodeTester class (example), 105
LibraryPerfTest class (example), 47
LibraryTest class (example), 13
implemented as test fixture, 27, 31, 81
initial version (C++), 117
JUnit, 65
success of, changing Library class for, 15
test method to cause expected error, 84

testAddBooks() and testLibrarySize(), 25
TestFixtureSetUp and
TestFixtureTearDown
attributes, 83
TestRunner modified to run, 13
LibraryTests class (example), 29
as a TestSuite, 31
creating TestSuite, 66
PyUnit test fixture, 91
running with TextTestRunner, 67
LibraryXMLDoc class (example), 102
LibraryXMLDocTest class (example), 102
licenses, open source software
BSD license for XMLUnit, 98
Common Public License, 63
GNU Lesser General Public License, 70
public license for NUnit, 80

M

macros
C++, UT_ASSERT(), 114,116
CppUnit
C language, 70
CPPUNIT_TEST_FAILURE(), 78
CPPUNIT_TEST_SUITE_NAMED_
REGISTRATION(), 79
CPPUNIT_TEST_SUITE_
REGISTRATION(), 78
implementing assert methods, 79
TestSuite objects, automatically
creating, 77
definition of, 186
main()
BookText class (example), 21
TestRunner class, 11,115
TextTestRunner class, 22
makeSuite(), 93
Martin, Jeff, 98
member, 186
message parameter, NUnit test assert
methods, 86
methods, 186
Microsoft Foundation Classes (MFC), 186
MinUnit, 19
mock objects, 41-44, 186
tools supporting development of, 44
MockDBConnection class (example), 43
MockRunner, 44
MUTual EXclusion object (mutex), 186

Index | 193

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896
Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from

the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

N open source software

CppUnit, GNU Lesser General Public
License, 70

JUnit, Common Public License, 63
NUnit, released under a public license, 80
Python and PyUnit, 88
XMLUnit, 98

Oracle PL/SQL language, xUnit for

NamedRegistries class, 144
namespaces, CppUnit, 70
naming conventions
CppUnit test methods, 75
JUnit test classes, 65
nested class, 186

Nester, 20 (PLSQL), 19
NET
. . Orthodox class, 147
Nester, reporting on code not unit o
utputter class, 71, 148
tested, 20
NUnitForms extension to NUnit, 19
WinForms GUI toolkit, 51 P

xUnit for (see NUnit)
Newkirk, James, 80
Node class, 183
NodeTest class, 104, 105, 106
NodeTester class, 104, 106
NotEqualException class, 145
num_test_success counter, 114
NUnit, 18, 80-87

architecture, 80

Ignore attribute, disabling a failing

package scope, declaring protected/private
methods as, 39
packages, JUnit, 63, 122
pair programing, 186
parsers, XML, 98
Apache Crimson, 98
DocumentBuilder, 104
Xerces, 105
path notation, XML documents, 106
performance tests, 47—49

test, 84
Nester extension, 20
NUnitForms extension, 19

code performance tests, JUnitPerf, 19
LibraryPerfTest class (example), 47
variations in result, problems with, 48

reporting on test failures, tests not run,
and total number of tests, 85

running tests with GUI or console test
runner, 84

test assert methods, 82, 86

test class, defining with TextFixture
attribute, 81

test fixtures, 81

test methods defined using Test
attribute, 81

tests for expected error behavior, 84

web site, 80

XMULUnit extension (see XMLUnit)

permission to use code examples, xi

Pester, 20

plain asserts, 32

PL/SQL language, xUnit for (utPLSQL), 19

Poole, Charlie, 80

preprocessor directives __FILE_ _and __
LINE__, 114

presentation layer, GUI applications, 53

private attributes, 10

private class members, 186

private methods, testing, 38—40

PrivateAccessor class, 39

production class, 186

production code

0 building low-level tests into, 5

error-handling behavior, testing, 37

organization of, 40

relationship of unit tests to, 1

object-oriented programming, 186
good practices promoted by unit

testing, 2
. programmer tests, 2
objects .
L Protectable interface, 126
definition of, 186
GUL 51 protected class members, 186

protected methods, testing, 38—40
public attributes, 10

public class members, 186
Purcell, Steve, 88

pure virtual methods, 186

mock objects, 41-44
unit test, closing or deleting, 26
(see also smart objects; view objects, GUI)

194 | Index

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Python
command-line interpreter ro run code
interactively, 94
dictionary object, dict(), 92
Pester, reporting on code not unit
tested, 20
PyUnit version of xUnit (see PyUnit)
search path, 89
web site, 88
$PYTHONPATH environment variable, 89
PyUnit, 18, 88-96
adding a test to the test suite, 94
architecture, 88
command-line interpreter to run code
interactively, 94
creating uniquely named test methods, 90
GUI test runner, 95
makeSuite() method for creating a
TestSuite, 93
module to run all tests, 93
multiple test methods for test classes, 90
running tests from command line with
unittests.py module, 89
test assert methods, 95
test classes, creating by subclassing
TestCase, 88
test failure reporting, 90
test fixtures, implementing, 91
web site, 88

Q

Qt, 186
quality assurance (QA), 186
unit testing and, 4

R

Reader class, 106
red bar, 24, 186
Red-Green-Refactor (TDD cycle), 24
refactoring, 3, 186
reflection, 186
Reflection API (Java), overcoming access
protection, 39
registering test suites with
TestFactoryRegistry, 78
removeBook() (Library example class), 32
RepeatedTest class, 149
results of tests, 30
CppUnit classes that collect, 71
num_test_success counter, 114
output of, in CppUnit, 71

run()
Test interface, 29, 30
TestSuite class, 29
TextTestRunner class, 22
runTest(), 73
BookTest class (example), 11
TestCase class, 72, 88
UnitTest class, 9, 114

S

Safari browser (Apple), performance testing
of, 47
SAX (Simple API for XML), 186
scalability tests, JUnitPerf, 19
server-side code (Java), unit testing, 19
set methods, not testing, 38
setAccessible(), 40
setControlParser(), 105
setUp(), 37,83
AddBookViewTest class (example), 56
BookTest test fixture, 75
initializing objects shared by test
methods, 65
Library class (example), 48
PyUnit test fixtures, 91
TestFixture class, 28
SetUp attribute, 81
show() (JFrame), 56
similar() (Diff), 100
Simple API for XML (SAX), 186
single condition tests, 35-37
JUnit test methods, 65
singleton, 186
SmalltalkUnit (see SUnit)
smart objects, 52
Add Book dialog for creating a Book, 52
AddBook (see AddBook class)
interaction with humble dialog, 56
keeping important functionality in, 53
view object for, 53
(see also view objects, GUI)
software development
contribution by unit test frameworks, 1
TDD as part of design process, 3
SourceLine class, 150
Standard Template Library (STL), 70
strings (XML), comparing with Diff
class, 100
structural test (see white box test)
structural tests, 2
success of unit tests, 186

Index | 195

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896
Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from

the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

suite(), 66 Test attribute, 81

BookTest class (example), 76 test classes, 187
creating a TestSuite in PyUnit, 93 JUnit, 65
replacing with helper macros in test code, organization of, 40
CppUnit, 77 test coupling, 2, 187
TestSuite class, 30 TestFixtureSetUp and
SUnit (SmalltalkUnit), 18, 19 TestFixtureTearDown
Swing GUI toolkit, 51, 187 attributes, 82
JFrame class, 55 test fixtures, 24-28, 187
TestRunner class, 22, 67 AddBookViewTest (example), 56
SynchronizedObject class, 71, 151 CppUnit
SynchronizedObject::ExclusiveZone, 152 aggregating into a TestSuite, 76
SynchronizedObject::SynchronizationObject, implementing unit tests as, 74
153 ensuring test isolation, 26
implementing in PyUnit, 91
T LibraryPerfTest (example), 48

LibraryTest class (example), 66
LibraryXMLDocTest, refactoring as, 103
SetUp and TearDown attributes,
NUnit, 81
test isolation provided by setUp() and
tearDown(), 65
test methods with excessive asserts,
changing to, 36
Test interface, 28
CppUnit, 70, 154
JUnit, 65,127
TestResult as parameter of run(), 30
test methods, 187
test results (see results of tests)
test success counter, 14
TestAssert namespace (CppUnit), 70

TDD (Test Driven Development), 2, 187
basic steps in cycle, 3, 8
cycle described as
Red-Green-Refactor, 24
GUI objects and, 52
JUnit as example of, 63
test failure as success of process, 11
TearDown(), 83
tearDown()
BookTest test fixture, 75
destroying objects shared by test
methods, 65
PyUnit test fixtures, 91
TestFixture class, 28
TearDown attribute, 81

templates, 187 T .
) estCaller class (CppUnit), 76, 155
) C++3 Standard Ter’l’lplate Library, 70 TestCase class, 20, 30
test twice, code once”, 3 CppUnit, 70,72, 156
test assert methods implementing Test interface, 28
assertEqual(), 89 JUnit, 65, 127129
Cpp.Umt, 79 PyUnit, 88
%\?&ntf 6§i 6g6 test assert methods, 95
mit, €2, relationship to TestFixture, 26
PyUnit, 95

runTest(), 72

XMLTestCase, 98
testConstructBook() (BookTest

example), 21

TestDecorator class, 158
TestFactory class, 159
TestFactoryRegistry class, 78, 160
test_failure(), 114
TestFailure class, 129, 162
test-first development, 8
TestFixture attribute, 81

assert_(), 91
failUnlessRaises(), 92

XMLUnit, 98
assertNodeTestPasses(), 105
assertXMLEqual(), 99
assertXMLIdentical(), 100
assertXMLValid(), 102
assertXpathExists(), 106
listing of, 106-109

test assertion macros, CppUnit
CPPUNIT_ASSERT(), 73
CPPUNIT_ASSERT_EQUALC(), 75

196 | Index

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

TestFixture class, 30, 71, 164]
LibraryTest implemented as, 27
relationship to TestCase, 26

TestFixtureFactory class, 165

TestFixtureSetUp(), 83

Ui namespaces, CppUnit, 70

UI (User Interface), 187

Unified Modeling Language (UML), 187
unit test frameworks

TestFixtureSetUp attribute, 82
TestFixtureTearDown(), 83
TestFixtureTearDown attribute, 82
TestListener interface, 71, 130, 165
TestResult class, 30, 166
CppUnit, 71
JUnit, 131-133
TestResultCollector class, 71, 168-170
TestRunner class, 10, 22-24, 30, 67
C++ version, 115
CppUnit, 70,72,170-172
text version, 75
GUI versions, 24
JUnit tools, 66
modified to run LibraryTest, 13
running TestSuite instances, 30
TestSetUp class, 172
TestSucessListener class, 173
TestSuite class, 28-30, 66
adding TestSuite objects to a named
registry, 79
containing other TestSuites, 29
CppUnit, 70,76, 174-175
implementing Test interface, 28
JUnit, 65, 133-136
PyUnit, 88, 93, 94
registering test suites with
TestFactoryRegistry, 78

running instances with TestRunner, 30

TestSuiteBuilder class, 176
TestSuiteFactory class, 177
text content, XML elements, 100
TextOutputter class, 178
TextTestProgressListener class, 179
TextTestResult class, 180
TextTestRunner class, 22

running BookTest (example) class, 23

running LibraryTest, 66

running LibraryTests test suite, 67
thin view classes (see view objects, GUI)
to assertXMLIdentical(), 100
toString(), 102

XMLElement class, 99

Transformation API for XML (TrAX), 98,

187
Two, Michael, 80

Ct+, 113-121
creating a Book, 113-117
creating a Library, 117-120
class diagram for library application, 16
complex architectures, verification by, 2
definition of, 1, 187
key element of Test Driven
Development, 2
library application (example), 8-17
creating a unit test, 9
setting up unit test framework, 8
quality assurance (QA) and, 4
simple tests, writing, 5
success of unit test, 12
xUnit family of tools, 18-31
architecture of, 20-31
extensions, 19
listing of, 18

unit testing, resources, 110-112
unit tests, 20, 187

aggregating with TestSuite, 28-30
class diagram for library application, 16
coupled (see test coupling)
creating (library application example), 9
for debugging, 4
GUI applications, 51-62

Library GUI (example), 53-62
isolation of, 26-28
key classes used in building (JUnit), 65
layout code and, 59
low-level, writing, 5
relationship to production code, 1
types of, 2
writing, 32-50

AbstractTest, 44-46

asserts, types of, 32

defining custom asserts, 34

Library and Book classes, latest

versions, 49

mock objects, 41-44

performance tests, 47—49

single condition tests, 35-37

test code organization, 40

testing expected errors, 37

testing get/set methods, 38

testing protected behavior, 38-40

Index | 197

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

UnitTest class, 8
C++ version, 113
getNumSuccess(), 14, 118
unittest.py module, 88
running tests without, 90
unittests.py module, using as test runner, 89
URL (Uniform Resource Locator), 187
User Interface (UI), 187
UT_ASSERTY(), 114,116
utPLSQL, 19

v

Validator class, 106
validity of XML document, testing, 102
vbUnit (xUnit for Visual Basic), 19
vectors, Library class (example), 26, 48
view objects, GUI, 52
AddBookView class (example), 53
base class for, 60
presentation-related code in, 53
unit test for BaseView class, 60
unit tests for classes derived from
BaseView, 61
(see also AddBookView class (example))
virtual method, 187
Vorontsov, Alexei, 80

w

W3C, 187
DocumentTraversal interface, 98
XPath Recommendation, 106
web page for this book, xii
web-based applications
testing with HTMLUnit, 19
testing with HTTPUnit, 19
white box tests, 2, 187
Windows Forms applications, GUI testing of
(NUnitForms), 19
windows, main application window (library
GUI), 60
WinForms GUI toolkit, 51
World Wide Web Consortium (see W3C)
wxWindows for C++, 51

X

Xalan transformation engine, 98
Xerces XML parser, 98, 105

XML, 187
DTD (Document Type Definition), 102
Java transformation classes, 98
XML Path Language (XPath), 106
XMLAssert class, 98
XMLElement class, 99
supporting text content and child
elements, 100
test adding content and children, 100
XMLElementTest class, 99
XmlOutputter class, 181-182
XmlOutputter::Node class, 183
XMLTestCase class, 98
test assert methods, 106—109
XMLUnit, 19, 97-109
architecture, 98
JUnit version, 98
NUnit version, 98
test adding content and children to
XMLElement, 100
test using assertXMLValid() to verify a
document, 102
testing document compliant with
LibraryXMLDoc DTD, 103
testing entire XML documents, 101
testing for equivalent XML content, 99
testing for identical XML content, 100
tests for XML content, 98
tests verifying results of XPath
statements, 106
walking the XML node tree, 104
web site information on, 98
XP (see Extreme Programming)
XPath, 98, 106, 187
XSL, 98, 187
xUnit family of unit test frameworks, 18-31
architecture of, ix, 20-31
summary, 30
test fixtures, 24-28
TestCase class, 20
TestResult class, 30
TestRunner class, 22-24
TestSuite class, 28-30
building your own instead of, 7
extensions, 19
listing of most popular, 18

198 | Index

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896
Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from

the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

About the Author

Paul Hamill first programmed on a PDP-11 in the early 1980s and has been writing
code ever since, working on many software projects large and small, for customers
ranging from Fortune 500 corporations to startups. Paul’s technical interests include
Agile Development and advanced GUIs and graphics. He holds a BS in mechanical
engineering from Cornell University and an MS in electrical engineering from the
University of Colorado at Boulder. Along with his wonderful wife, Anya, amazing
son, Pavel, and brave dog, Sputnik, he makes his home in Boulder, Colorado.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Unit Test Frameworks is a Norway rat. Contrary to its
name, the Norway rat’s origins are in Asia; over the centuries, it has spread
throughout the world. It is often blamed for transmitting the Black Plague through
Europe, but another species, the black rat, is actually responsible for this. The
Norway rat’s appearance includes a brown or dark gray coat with a white or grayish
underside, pointed ears, a long snout, and a scaly tail. It averages about 9 to 10
inches in length. It builds its own nest of twigs and leaves and is mostly nocturnal. It
makes its habitat where food is most accessible and is typically found in cities, where
it can root through garbage; near farms where it can forage through the harvest; and
near the ocean, where it can eat fish, seaweed, and the like. It lives among large
groups of other rats, usually with one male designated as the leader.

Along with the common house mouse, the Norway rat is the most popular animal
model for scientific lab testing. (The lab rats are usually albino, however.) It is useful
because its metabolism is very much like a human’s and the rats often are affected by
the same diseases and sicknesses as humans.

Mary Brady was the production editor and the copyeditor for Unit Test Frameworks.
Colleen Gorman proofread the book. Matt Hutchinson and Claire Cloutier provided
quality control. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Clay Fernald produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font. David Futato designed and produced the CD label
using Adobe InDesign CS.

Melanie Wang designed the interior layout, based on a series design by David
Futato. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe Photo-
shop CS. This colophon was written by Mary Brady.

Unit Test Frameworks. Unit Test Frameworks, ISBN: 0596006896

Prepared for jcaballero.hep@gmail.com, JOSE CABALLERO

Copyright © 2004 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Copyright
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Acknowledgments

	Unit Test Frameworks: An Overview
	Test Driven Development
	Unit Testing and Quality Assurance
	Homegrown Unit Testing

	Getting Started: Tutorial
	Outline of an Application: the Virtual Library
	Example 1: Create a Book
	Example 2: Create a Library

	The xUnit Family of Unit Test Frameworks
	xUnit Family Members
	xUnit Extensions
	The xUnit Architecture
	xUnit Architecture Summary

	Writing Unit Tests
	Types of Asserts
	Defining Custom Asserts
	Single Condition Tests
	Testing Expected Errors
	(Not) Testing Get/Set Methods
	Testing Protected Behavior
	Test Code Organization
	Mock Objects
	AbstractTest
	Performance Tests
	New Library and Book Code

	Unit Testing GUI Applications
	Library GUI

	JUnit
	Overview
	Architecture
	Usage
	Test Assert Methods

	CppUnit
	Overview
	Architecture
	Usage
	Test Assert Methods

	NUnit
	Overview
	Architecture
	Usage
	Test Assert Methods

	PyUnit
	Overview
	Architecture
	Usage
	Test Assert Methods

	XMLUnit
	Overview
	Architecture
	Usage
	Test Assert Methods

	Resources
	Web Sites
	Discussion Groups
	Books

	Simple C++ Unit Test Framework
	Example 1: Create a Book
	Example 2: Create a Library

	JUnit Class Reference
	Assert
	AssertionFailedError
	ComparisonFailure
	Protectable
	Test
	TestCase
	TestFailure
	TestListener
	TestResult
	TestSuite

	CppUnit Class Reference
	assertion_traits
	AutoRegisterSuite
	CompilerOutputter
	Exception
	Exception::Type
	ExpectedExceptionTraits
	NamedRegistries
	NotEqualException
	Orthodox
	Outputter
	RepeatedTest
	SourceLine
	SynchronizedObject
	SynchronizedObject::ExclusiveZone
	SynchronizedObject::SynchronizationObject
	Test
	TestCaller
	TestCase
	TestDecorator
	TestFactory
	TestFactoryRegistry
	TestFailure
	TestFixture
	TestFixtureFactory
	TestListener
	TestResult
	TestResultCollector
	TestRunner
	TestSetUp
	TestSucessListener
	TestSuite
	TestSuiteBuilder
	TestSuiteFactory
	TextOutputter
	TextTestProgressListener
	TextTestResult
	XmlOutputter
	XmlOutputter::Node

	Colophon
	Index

