Atlas Tier 1/2 Load Testing and Monitoring
Jay Packard — June 11 2007

Shown below is a mockup of a web application named “Universal Dashboard” for
supporting Atlas Tier 1-2 Load Testing/Monitoring by centralizing status monitoring

(e.g. Nagios), performance monitoring (e.g. Ganglia, Cacti), and command execution:

[o T!_ee!.'iéw example - h!oiii_lﬂ Firefox
File Edit Wew Go Bookmarks Tools Help

s:ﬂ (= B @ (X | 6‘;] [} hittp:7 fwww.treeview.net /treamenu) 3 fr_largetrae. himl H Boo [CL
Universal Dashboard
Tests Source IP Destination IP
SRM ‘4bnl.gov ‘Abnl.gov
+ (_Jsrmep-stress {23 130.199.80.1 #{21130.199.80.1
(2] srmep-bursty #{Z3 130.199.80.2 #(1130.199.80.2
A Globus 3y fnal.gov £y fnal.gov
[+ l:_j ijLrUn_disBIbuted E L__l 131.225«70.1 [+] L__i 131.225.70.1
Configurator
Parameters Scheduled tests

date/time] 06/12/07

| 12:43 | date approved test

6/12/07 12:43 srmep-stres | [ESEIEEEE
Source IP: 131.225.0.1 B oo

06/12/07 3:13 [l STmep-stres
Dest IP: 130.199.80.2

Repetitions:

Monitoring
Status Performance
src dest : —
Beriee type | bandwidth range |hour
Bl W skv o
B B o Source - De_stlnatlon

s el e

B M enrs

£

A user would first select a test, a source IP (or group of IPs such as a site or a subnet),
and a destination IP (or group of IPs). For this combination of test, source IP, and
destination IP, a template of parameters for this test would be shown, some of which are
determined by the IP and others that are determined by the user such as date/time. When
the parameters are chosen, she presses the -> button to have it scheduled. If this test
involves a remote site, the administrator at that site will see the scheduled tests and
decide whether to approve it or not. Also, for this combination of test, source IP, and
destination IP, monitoring information would be shown including service status and
graphs of the specified type (bandwidth, errors, files transferred, etc.) and range (hour,
day, week, month, etc.). Besides the endpoint graphs, graphs at the various levels of the
middle-ware stack would also be shown.

The services and IPs show a colored icon that indicate the status of the service or
host (e.g. red for down or green for up), which behind the scenes would involve parsing
Nagios logs or calling web services. The parent folder's status will summarize the status
of it's children. The scheduled commands also show a colored icon that indicate whether
the remote administrator approves the test. An administrator would see and decide
whether to approve tests created by administrators from other sites if the test involves his
site. Implementing this coordination and storing/scheduling the tests would be a large
part of the development of this application.

This application would be configured using xml that looks something like:
<dashboard>
<tests>
<test name="srmcp” services="SRM, dCache, PNFS” >

<test name=""srmcp-stress’ >
<parameters>
<parameter name="source IP” type=""srcip”/>
<parameter name="dest IP” type="destip”’/>
<parameter name="repetitions” type="manual”/>
</parameters>
</test>
<test name=""srmcp-bursty’’>

</test>
</test>

<test name="Globus” ...>

</test>
</tests>

<services>
<service name="SRM”/>
<service name="dCache”/>
<service name="PNFS”/>
</services>

<ips>
<ip name="bnl.gov”’>
<graphs>
<graph type="num files” service="SRM”
uri="http://graphs.bnl.gov/graph?s=@START @”’/>
<graph type="bandwith” service="PNFS”

uri="http://graphs.fnal.gov/graph2?hour”/>

</graphs>
<statusLogs>
<statusLog type="nagios” service="SRM” uri="srmstatus.txt”/>
</statusLogs>
<ip name="fnal.gov”’>
<graphs>

</graphs>

</ip>
<ip name="130.199.80.2” services="PNFS”/>

</ip>

<ip name="131.225.*” alias="fnal.gov” services="SRM, dCache, PNFS”’>
<ip name="131.225.70.1" services="PNFS”/>

</ip>

</ips>

</dashboard>
Basically in this configuration, tests along with the parameters required to run the test,

services, and IPs along with the graphs and status logs that monitor this IP are all defined.
The dashboard engine would figure out for the selected test and IP which graphs and
status logs are appropriate to display. Another feature of this configuration would be that
it would allow for arbitrary hierachy for tests, services, and IPs.

Details and have been left out in this proposal since this is a first iteration. If it
seems to fit our needs, it can be extended. It may not meet our needs if centralization is

not too important or if it is too much effort to be worth it. The alternative is to bookmark
the various monitoring and status URLs (e.g.
http://www.opensciencegrid.org/Grid Monitoring or

https://www.racf.bnl.gov/Facility/Monitor/dashboard.html), have a command prompt

available, and a method of communication with other administrators, and then to switch
between these. It may be that the focus should not be so much on centralization, but on
creating the key lower level testing scripts that are currently lacking.

To summarize, the Universal Dashboard is not extremely sophisticated by itself,
but simply brings brings together scripts, status monitoring, and performance monitoring
to hopefully make testing and monitoring a smoother experience. Because it is so
general, it can accommodate a few services and hosts to begin with, and then more can be
added over time. Also because it is general, multiple people can simultaneously work on
various testing scripts to be used by this application without worrying about the whole.

