This talk is intended as an overview of the work in progress.

It is pretty much my “to do” list from the Wiki page, with a few additional slides.

Things that were done or progressed significantly are labeled in green.
Hardware and facilities

- Reconfiguration of the network connections to eliminate or reduce current bandwidth limitations.
 - Ticket for network reconfiguration submitted by Robert on July 21st. Outcome unknown. :-(
 - Scalability tests with reconfigured network (Tadashi, Sergey)
- Set up redundant Xrootd redirectors, PROOF master nodes (Ofer?)
- Estimate how much "bytes out" bandwidth is need for the farm for "typical" analysis scenarios.
 - See next two slides.
- Needed input:
 - Number of nodes used for typical Condor submission
 - Jobs per node
 - Typical job input rate (Athena/AODs ~2 GB/s ?)
- What is the final size of the farm? (Michael)
 - See next slides.
Disk I/O tests.

- Current single server disk subsystem properties:
 - 4x500GB SATA disks in RAID 0
- Single disk properties:
 - Model ST3500630NS, Seagate Barracuda SE family
 - Perpendicular recording
 - 7200 rpm
 - 8.5 ms seek time
 - 16GB cache
 - SATA-3GB interface
 - NCQ capable
 - Maximum sustained transfer rate of 72 MB/s is claimed by the Seagate.
- Independent tests reported from 44 to 78 Mb/s transfer rate
- Robert Petkus performed iozone disk tests on one of the nodes
 - “Torture test”: 4 threads simultaneously reading 4 separate files (8GB each)
 - Measured average transfer rate from the RAID array ~74 MB/s
- Looks like a reasonable match for 1 Gb network bandwidth per node!
• Somewhat idealized scenario
• ACF batch can run up to ~1500 simultaneous jobs
 • admittedly extreme case
• Assuming that typical Atlas Athena/root job consumes ~3MB/s
 • In tests with tags we've seen ~2 MB/s for loose cuts case and ~4 MB/s for strict cuts
• Total theoretical bandwidth needed is: 1500x 3Mb/s= ~4.5 GB/s
• Assuming that each node can provide ~70 MB/s
• That gives : 4.5 GB/s / 70 Mb/s/node= ~ 64 server nodes
• Perhaps 64 nodes total, with 2-3 redundant xrootd redirectors
• Curiously enough 64 is a “magic” number for Xrootd architecture (scales as 64 B-Tree)
• We will also need a test “mini farm” for new versions tests and validation and other related software development ~3-5 nodes
System Management and Security

- General Farm Management
 - Scripts for full farm xrootd/PROOF: "Start up/Shutdown/Restart". (done, Ofer)
 - Scripts for data movement to/from Xrootd farm to NFS and dCache. (done? Sergey)
 - Local farm “file catalog”
 - Web page? Web interface?
 - Scripts to delete datasets or selected files

- Security
 - Test ssh and certificate authentication. Select most appropriate method (convenience, security, etc)
 - PROOF client “conduit”
 - Off-site users issues? Is login to acas necessary?
 - Firewall problems
 - Kerberos authentication? (Ofer, Edgar)
Farm usage model

- Two aspects: Xrootd and PROOF
 - Different use cases, different load types
 - Different security issues
- How to utilize the farm
 - Open to all, open to selected people, open to group representatives, etc....
 - What is needed? What is sustainable? What is manageable?
 - What is experience in other experiments (BaBar, Alice, CMS, etc) ?
 - Xrootd for all, PROOF for a few?
Monitoring and Documentation

- Farm Monitoring.
 - Ganglia pages. *(done. Jason)*
 - Adapt SLAC monitoring package? *(Edgar, Ofer)* **Done.**
- Web page/TWIKI with general farm information, help, examples, tips, talks, links to Ganglia page, etc. *(Robert?).*
 - **Done** *(Kyle)*
- Think of appropriate mail list/hypernews. Have a separate one?
Integration with Atlas DDM

- DDM
 - Integration with current (US?) Atlas distributed analysis model. Panda/pAthena/DQ2 (tadashi?) In, sprogress, see Tadashi's talk
 - data movement scenarios
 - PANDA to xrootd directly with registering in DQ2 ?
 - Two stages: PANDA to dCache, then to Xrootd ?
 - Interaction with dCache at BNL
 - Tests with Xrootd “door” on dCache
 - Who will be in charge of moving/removing datasets
- Interaction with remote Xrootd servers
 - Proof of the principle
Software and Analyses Tests

- Analysis Software Tests
 - PROOF analysis with TS selector, Analysis with libraries in PAR format. (Kyle?). **Tselector done**, PAR format I'm not sure.
 - Examples for Tutorials. **Done** (Kyle, Tadashi)
 - More analyses from different physics groups (Kyle?). **Kevin Black**
 - Heavy Ion program
 - datasets – currently mostly ntuples on dCache
 - Try optimization of dCache read ahead, etc. Different size here!
 - **Done. Factor of 5 improvement!**
 - Mostly root based analyses, interactive and batch, try with PROOF (Mark Baker, Sergey?)
 - Try Scott's “AODs in root” with PROOF (Scott?)
 - Analyses with several "post-AOD" root based formats(DPD, etc) using PROOF (Diego, Kevin)
 - Xrootd scalability tests with reconfigured network (Tadashi, Sergey?)
Software and Analyses Tests

• Proof scalability tests
 • How many slaves per box (3, 4, 5...?) with given hardware? (Sergey)
 • Note that farm will be heterogeneous
 • In root 5.14 observed PROF crashes with 4 slaves per node. The reason is unknown. Crashes with 3 slaves per node.
 • Will resume testing with root 5.16
 • How many simultaneous users can work on the farm? (Kyle?)
 • How robust is PROOF system anyways?
 • Gain experience with long jobs, slave crashes, crash recovery, etc
 • Observed some PROOF instability. Introduced daemon auto-restart scripts (Ofer).
 • 27 daemon crashes over 2 days
T3 aspects

- T3 Aspect of Xrootd/PROOF
- Shall we think of and provide recommendations for:
 - Use cases
 - Usage examples
 - Management tools
 - Security issues and recipes
 - Hardware/Networking recommendations
 - Wiki page is up. Examples, tips, etc
 - Performed disk transfer rate tests.
 - Monitoring framework is running
- There is already Atlas T3 task force
Gerri Ganis set up at CERN an afs area for PROOF development snapshots

- PROOF development is more rapid than root releases
- Root/xrootd/PROOF versions synchronized and validated
 - Important from our experience!
- Targeted for Alice, Atlas (us+Wisconsin?) users
- `/afs/cern.ch/sw/lcg/contrib/proof/root`
- Latest version based on root 5.16
- Source code and a few binary distributions
- `slc4_ia32_gcc344` distro is installed in BNL root directory (Thanks to Alex Undrus!) and on the test farm yesterday.
- Please test.
New in ROOT 5.16

- Added support for processing datasets 'by name', i.e. by just sending the name of a dataset known by the PROOF master node:
 - `root[] proof->Process("dc2006", "TrackAnalysis.C")`

- Added first infrastructure to support for scheduling and quota controls:
 - possibility to define groups of users
 - simple dynamic scheduler assigning nodes to the sessions based on the cluster load;
 - worker-level priority-based throttling of sessions

- Reduced memory footprint ofproofserv at startup by a factor 2

- Added possibility to load a macro or a class (TProof::Load(...))
 - `root[6] p = TProof::Open("ganis@lx6043")`

- Added full support for authentication for the xrootd-based communication layer with automatic credential forwarding to worker nodes; supported protocols: password-based, Kerberos, GSI.

- Added support for the acquisition of AFS tokens within the proofserv sessions; this allows to access private AFS areas from any worker or master node.

- Several improvements in the new packetizer - TAdaptivePacketizer - which is now the default packetizer.

- Several bug fixes and internal optimizations

- More in v5.16 release notes!