
1

Draft version saved 12/30/99 2:56 PM

U.S. ATLAS Software Development

Work Plan

This document addresses the plans of the US ATLAS group to participate in offline software development for the ATLAS
detector. ATLAS offline software is broadly divided into two categories, core software and subdetector specific software.
Core software comprises the common operational framework, infrastructure, and utilities that are not specific to any piece of
the detector. Detector specific software comprises detector simulation, reconstruction and calibration codes and the detector
specific components of the detector description and database. US ATLAS is participating in the development of select
components of both core and detector-specific software and is undertaking leadership roles in aspects of both.

Core software responsibilities in the US are currently the subject of well advanced negotiations with ATLAS Computing
management, which is itself emerging from a period of reorganization. It has become clear that the US will focus on
Control/Framework and Database software, including work on the Event Model. These areas are well matched to the interests
and expertise of US collaborators, they are closely related, and they secure for the US a central role in the core software effort.

In subdetector software US efforts are focused in areas which complement our hardware responsibilities. Specific software
responsibilities are negotiated within the subdetector software organizations of ATLAS. Throughout the US program we plan
to closely connect core software development with subdetector software efforts, with the latter providing real-world testbeds
for the evolving core software.

Our plans in these various areas are detailed in the following sections.

1 Core Software

The core software provides the operating environment for the software modules written by physicists, and supplies
mechanisms for control of those modules, for data input/output to them, and for communication and coordination between
modules written by different people and groups. Core software also encompasses data management, including event data
storage and access, and detector description, calibration, and other database-resident data. It provides functionality that
facilitates reconstruction and physics analysis tasks, such as histogramming and visualization tools, and insulates the
physicist user from the details of implementation and environment.

Software development in the core areas is both crucial to the work of ATLAS physicists and presently drastically under-
staffed. Because it provides the environment into which physicists must integrate their own code, it must be developed and
made operational early in the software process. The design and development effort for core software must, therefore, be
heavily front-loaded. It is not unreasonable to expect that the next several years will require more work on core software than
on detector-specific and physics software. The importance of early core work is recognized by ATLAS and motivates the
urgency given to defining and implementing a core software architecture for ATLAS through the design and specification
work of the ATLAS Architecture Task Force and the forthcoming implementation work of the emerging Architecture Team.
The recognition that a high proportion of the core software expertise available to ATLAS is found in the US is reflected in the
major roles offered to US collaborators in core domains, as discussed below.

The scale and complexity of the offline software required for timely and effective extraction of physics in ATLAS make it
essential that modern software technologies and methodologies be employed in order to make the computing task tractable at
reasonable manpower levels and on the required schedule. The scale and sophistication of the required software further
dictate that dedicated computing professionals participate in all aspects of software development. A professional software
engineering effort, closely partnered with physicists, is required. Core software will be particularly dependent on computing
professionals in the design and development effort because of the highly technical content and stringent quality and reliability
requirements in the core domains.

Thus both schedule and professionally demanding requirements on the software lead us to include software professionals in
our manpower needs to support and complement the work of physicists in software development, particularly in core software

2

domains. We expect many of these professionals will have physicist training – beyond the obvious advantages of familiarity
with the field, we are best able to hire and retain personnel with an interest in the scientific program – but the degree of
commitment and specialization and level of professionalism in software required of such positions precludes research
physicists from filling these roles.

Based on current negotiations with ATLAS we anticipate the US playing a leading role in the control/framework software
domain within ATLAS, with Craig Tull (LBNL) leading the US effort. We have already established a leading role in the data
management/database domain with the appointment of David Malon (ANL) as co-leader of the ATLAS database effort, and
we propose to assume responsibility for approximately half of the ATLAS-wide task in this domain. Within the U.S.
organization, Tull and Malon are the project managers for the respective core sub-projects. Subsequent sections describe the
US program in these domains.

1.1 Control/Framework Software

ATLAS is committed to the development of object-oriented (OO) software grounded in accepted international standards and
practices. The long lifetime of the experiment, the complexity of the required software and the distributed developer
environment (we expect ~85% of the software effort to be outside of CERN) all argue for a highly modular system with well
defined interfaces.

ATLAS has addressed the issue of software design in its Computing Technical Proposal, and more recently in the
Architecture Task Force Report pertaining to core software. An ATLAS software development methodology has been codified
in an ATLAS Software Process (ASP) including formal design reviews and required stages of documentation. Details of the
ASP are currently under review, with the aim of streamlining the process; we expect, however, a continued emphasis on
modularity, maintainability and documentation.

Control/Framework software provides the operating environment for the software modules written by physicists, and supplies
mechanisms for control of those modules, for data input/output to them, and for communication and coordination between
modules written by different people and groups. It insulates the physicist user from the underlying details of the operating
system, data formats, and communication protocols.

1.1.1 Architecture Planning

For the duration of the recently concluded ATLAS Architecture Task Force (July 1, 1999 to October 30, 1999) D. Quarrie and
M. Shapiro devoted the whole of their ATLAS time to its activities, assisted by C. Tull and others from LBNL. The principal
result of the ATF is a report detailing decisions relating to the overall architecture of ATLAS software. The ATF also decided
to appoint an ATLAS Architecture Team to follow up on its work by pursuing the detailed design and implementation of the
ATLAS software architecture, with the aggressive initial milestone of delivery in May 2000 of a first prototype framework.

As of December 9 1999, P.Calafiura, D.Quarrie, and C.Tull have been appointed to the emerging Architecture Team. This
team has no finite term and will be meeting to discuss and develop the ATLAS software architecture for the forseeable future.

1.1.2 Control/Frameworks and Components

As stated above, the complexity and sheer volume of code that is necessary to support and accomplish the event
reconstruction, data mining, and data analysis for an experiment like ATLAS presents a tremendous challenge for developers
of the software infrastructure in general, and of the control software domain in particular. Other experiments have faced this
type of challenge (albeit at a smaller scale) before and have addressed it in different ways.

One approach which has been successfully tried in several High Energy and Nuclear Physics (HENP) experiments, but has
been perfected in none, is the use of an analysis framework. An analysis framework is a software environment into which
software contributions written by many authors can be integrated in a way which allows and eases integration and inter-
operation of those software contributions. The framework concept is well known in the Information Technologies (IT)

3

community and has been described many ways. Gamma, et al., in the Design Patterns1 book distinguish between a toolkit
(such as a class library) and a framework as follows:

Gamma, et al., Design Patterns: "When you use a toolkit, you write the main body of the
application and call the code you want to reuse. When you use a framework, you reuse the main
body and write the code it calls... Not only can you build applications faster as a result, but the
applications have similar structures. They are easier to maintain, and they seem more consistent to
their users. On the other hand, you lose some creative freedom, since many design decisions have
been made for you."

Data analysis framework-"like" programs exist and have been used in HENP experiments. However, often no distinction is
made between software packages which address very different analysis-related tasks (e.g. execution control, data I/O, graphics
presentation, data analysis, etc.). This tendency arises from the necessity that these tasks be seamlessly integrated in the final
system. However, the resultant lack of compartmentalization complicates software maintenance and upgrades2 and imposes a
barrier to understanding the overall architecture for new software developers and users.

A recognized approach to this kind of problem is the adoption of software components as the fundamental building block of
the overall software system. Again, component technology is a well known and increasingly popular approach in the IT
community (CORBA, DCOM, and Java Beans are examples of component technologies that are gaining acceptance across a
wide range of software industries.).

Although no formal definition of a component is accepted by the Computing Sciences (CS), there is usually large overlap
between different experts' individual descriptions.

Lakos, Large-Scale C++ Software Design: "A component is not a class and vice versa.
Conceptually, a component embodies a subset of the logical design that makes sense to exist as an
independent, cohesive unit. A component bundles a manageable amount of cohesive functionality
that often spans several logical entities... and can be lifted as a single unit from one system and
reused effectively in another system without having to rewrite any code."

Lakos also points out that a component-based architecture can (if properly designed) help control the physical design (as
opposed to the logical design) of a large system, reducing many of the compile-time and link-time problems which can arise
in any large software system.

An analysis framework recently developed by the LHCb collaboration (GAUDI) has many of the characteristics that appeal to
framework experts at LBNL as well as elsewhere in ATLAS. These include an explicit attention to package dependencies, a
coherent and consistent architectural approach to the design of the framework, and a formalized approach to the description
and documentation of the framework design.

1.1.2.1 An Extensible, Component-Based Physics Analysis Framework

We are proposing in the context of the ATLAS Architecture Team to design, develop, and deploy an extensible, component-
based physics analysis framework for use within the ATLAS experiment initially based upon the current GAUDI architecture.
We believe that the resultant system will be easily usable by other experiments, and potentially even other disciplines. We do
not yet propose an official or formal collaboration with the LHCb framework developers, but rather an experimental
cooperation in the short term with the possibility of engaging in a formal collaboration at some future date.

1 Design Patterns : Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing) by Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch (Designer) 1 edition (October 1995) Addison-Wesley
Pub Co; ISBN: 0201633612
2 "the size of the component to be changed has a much larger impact on effort than the size of the change itself."- Nisink,
Predicting Maintenance Effort with Function Points, IEEE International Conference on Software Maintenance, Bari, Italy,
October 1-3, 1997.

4

Thanks to a truly unique pool of physicists and computer scientists at LBNL who have played major roles in the design and
implementation of analysis frameworks for BaBar, CDF, CLEO-III, PHENIX and STAR experiments, we are in a position to
solve the computing challenges created by the software complexity of the next generation of HENP experiments.

We have conducted extensive evaluations of previous ATLAS control and framework structures, along with a "market survey"
of comparable systems from other experiments as a necessary first step in the development of a long-term strategy for the
ATLAS control framework.

During the course of the ATF we have had presentations at LBNL from experts on Object Network Component Model
(ATLAS), StAF (STAR, PHENIX, E896), CLEO III Framework (CLEO), AC++ (BaBar, CDF), and Gaudi (LHCb), and have
begun their evaluation. We also built the single most complex object network configuration to date using the Object Network
Component Model in an effort to investigate feasibility of using this approach to software execution and data flow control in
an HENP experiment and have reported on our evalutations to the ATF. These evalutations convince us that the GAUDI
framework forms the best starting point for development of a modern, object oriented analysis framework for ATLAS.

1.1.2.2 Control Framework Functionality

Because two of the primary tasks of this project are to assess the requirements for the control framework and to design an
architecture which satisfies those requirments, we cannot yet with certainty describe the final form and functionality of the
control framework. However, from prior experience with similar systems in other HENP experiments, we can discuss in some
detail many of the necessary control framework functional requirements and potential design and implementation candidates.

Some of the primary tasks of the proposed analysis and control framework are to control the flow of the event reconstruction
jobs, and the I/O of event, calibration and control data, efficiently using the scarce CPU and I/O resources available for the
production batch jobs. To process each event, analysis and service modules (including I/O modules) will be connected in
multiple execution paths, corresponding to different event classifications from the experiment trigger. Each path will have
independent filters and I/O modules. The framework will make sure that modules common to more than one path will be
executed only once. The framework will control the transitions of the modules through a finite, configurable set of states
(start-up, run begin, event begin, etc.).

To manage batch jobs running for weeks on hundreds of CPUs we will provide active error handling/recovery, execution
checkpoint/restart, and, if the event store is based on an ooDBMS, we intend to support ooDBMS transactions with rollback
for module communications and I/O. Another very important feature for the production and on-line processing management
is a journaling system capable of storing in a flat file or database the configuration of the production job: the active paths, the
input databases, the version of each module in use, the parameters defining its behavior and any other information necessary
to reproduce and understand the result of a production job.

Initially, the framework will be used by the core software team of each experiment (50-100 software engineers and physicists)
as a development tool. As the experiments get closer to data-taking the number of "end-users", many of whom will actually
contribute substantial amounts of code to the plug-in modules, will ramp-up to several hundred. The physicist who is
developing a new track fitting algorithm on his/her personal computer, will typical pick a few selected events from the main
event store, will reconstruct them using the new and old algorithms and will analyze the resulting tracks using an event
display program and her/his preferred physics analysis package.

This has important implications for the design of the framework. It must be possible to run with only a lightweight "kernel"
and a subset of plug-in modules relevant to the developer. The I/O management must be flexible enough to fetch the
necessary data and calibration from the remote event store or read a subset of them from local disk and provide the plug-in
modules with the same interface to the data no matter what the format or physical location. The framework must provide the
user with an interactive shell offering the full functionality of the production jobs (namely the ability of defines execution
paths and to configure modules), dynamic loading of modules, the ability to stop event analysis in the middle of an execution
path on the basis of the information provided by an event selection or filter module. It must offer a consistent interface to pass
module output data to the event display and to any of the supported physics analysis packages.

Other expected use patterns of the framework include the detector calibration and on-line monitoring, where high-speed
interactive access and processing of moderate sized data samples must be granted, and Montecarlo simulation with limited
I/O and interactivity but high use of CPU resources. In these use domains, the module call overhead must be small allowing
the system to run under many different situations.

5

To accommodate legacy and special-purpose code (libraries, graphics, etc.) as well as language evolution the framework will
need to be able to bind multi-language plug-in modules. It is likely and desirable that the framework itself will be written in a
single language but we can not exclude a priori the concept of a mixed-language framework.

We believe that it is essential to provide the physicist with the ability to analyze and visualize the data in the most productive
manner possible for that individual. We envision the use of a format independent data conduit that will permit the use of
many different analysis/visualization packages, and that can be expanded in scope as new products become available. It will
offer the ability to deal with complex objects as well as simple literals, and interface directly with the user's analysis code. It is
not intended to be a replacement for the likes of PAW and ROOT, but rather an interface layer between analysis code and a
visualization package, permitting the user to chose whichever final format is desired. By calling on routines provided by this
package, the user will be able to histogram simple variables, object members, and even entire objects, in multiple dimensions.
Upon completion, the histogrammed data will be saved in whichever format was selected by the user, allowing continued
analysis or visualization at their discretion.

The additional burden that will be placed on the user for the incorporation of this conduit will be minimal. It will
automatically handle standard data types, and require but brief descriptions of complex, user defined objects. In the event that
the user wishes to create a custom output format, skeleton programs will be automatically generated for the user to flesh out.

The use of such a data conduit will free physicists to pursue analyses in less rigid fashions than are currently in vogue. By
facilitating such freedom, we can start to make industry standard tools more accessible to the average physicist, as well as
allowing specialized tools to be developed for particular applications. It has often been the case that large applications which
are designed to handle all possible scenarios, such as PAW and ROOT (both popular analysis packages currently in use in
HENP), are by nature subject to severe limitations. By breaking this chain, and allowing freedom of choice, we hope to add
flexibility that has, until now, been sorely lacking from the HENP domain.

Based upon the recommendations of the ATLAS ATF and in consultation with the newly forming ATLAS A-Team, we
believe that the framework should include the following functionality.

• Framework Manager: Responsibility for building and configuring the application.

• Application Manager: Controls the event loop, driving the modules through their execution.

• Job Options Service: Configures adjustable parameters

• Event Input: Provides source of events for the event loop

• Event Output: Outputs event data to the persistent store

• Data Item Selector: Selects information within an event for output

• Event Collection Manager: Selects sets of event for input by the Event Input Component

• Event Merge: Merges information from several events (e.g. background mixing)

• Module Interface: Defines the interface for all major algorithmic components that are controlled by the
Application Manager.

• Transient Event Store: Used to cache data objects during execution of the modules.

• Event Data Service: Provides access to data objects in the transient event store

• Event Persistency Service: Provides access to persistent data in the persistent event store

• Event Data Converters: Provides conversion between different representations of data - e.g.
transient/persistent.

• Detector Description Service: Describes the geometry, materials and readout information for detector
components.

• Conditions Data Service: Provides storage of time-interval based information such as calibrations, slow
controls and alignment.

6

• Statistics Data Service: Histograms, ntuples and other statistics information that are collated during the
processing job.

• Magnetic Field: A component of the Conditions Data Service (12), that is highlighted because of it's
importance.

• User Interface: The service that the user interacts with, passing information through the Job Options Service.

• Message Service: Responsible for passing messages created by other components to the outside world.

• Bookkeeping Service: Responsible for keeping job statistics

• History Service: Stores the configuration information for the job such that it may be retrieved or examined after
the job has completed.

• Particle Properties: A service that provides access to the properties of standard elementary particles.

• Framework Utilities and Tools: Applications and scripts to ease migration to and use of the framework.

Additional deliverables associated with the software process are:

• Software Process Engineer [KEK/Amako]: Performs use case analysis of software requirements based upon
input from the ATLAS user community. Guides software process.

• Software Process librarian [LBNL/Day - 50% FTE]: Tracks the software process and ensures that
documentation and tracability between requirements, analysis, design, implementation and test is consistent.

• Chief Architect [LBNL/Quarrie - 50% FTE]: Establishes overall software vision. Defines global software
architecture. Ensures software consistency.

• Framework Architect [LBNL/Tull - 50% FTE]: Designs, coordinates development and deployment of the
control framework based upon and consistent with the overall software architectural model.

• LBNL Developer Support [LBNL/Milford - 50% FTE]: Establishes and maintains software development
environment. Includes commercial and non-commercial applications, scripts, makefiles, and other tools. Also
includes administration of local development machines.

1.1.3 Timescale and Milestones

Major milestones are foreseen as being: **reworked milestones needed here**

1.1.4 Approach and Methodology

The duration of an experiment like ATLAS is one order of magnitude longer than the current pace of change in computing. It
is not even clear whether many of the OO technologies currently adopted by LHC experiments for their computing models
and prototypes will still be relevant when they start running in 2005.

We don't think it is prudent to assume that the protocols or the actual code used in the early versions of the framework will
be in use at experiment start, not to mention through its expected 15-20 years lifetime. Many of the existing frameworks
provide satisfactory "horizontal modularity", the ability to replace existing plug-in modules. On the other hand, most of them
lack any kind of "vertical modularity", the ability to replace the implementation of the module interface (the "software bus").

Many HENP collaborations have already found themselves locked into using obsolete programming languages or operating
systems because of an early implementation choice. In such cases pressure to replace obsolete technologies increases over
years which the management resists because they (rightly) consider them to represent dramatic changes, leading to a crisis at
the worst possible moment and typically to a complete rewrite of the infrastructure, followed by a painful adaptation of the
physics code to it. We believe vertical modularity is the right approach to promote evolution of the software infrastructure to
incorporate new technologies as they become useful.

7

To promote vertical modularity we intend to base module interactions on interfaces described in an external dictionary. An
example of such a dictionary is the one on which OMG CORBA is based. CORBA (Common Object Request Broker
Architecture) is an industry supported architecture standard that manages communication among distributed components.
Distributed objects in CORBA interact using a language neutral interface specified by the programmer using the Interface
Definition Language (IDL). CORBA implementations provide an IDL compiler which reads in the dictionary and produces
the "glue" code necessary to broker the component interactions.

In a similar fashion our framework will ask all developers of service and physics analysis modules to provide a dictionary file
describing their interface to the external world (or to comply with one of the standard interfaces available in the repository).
We will use the description to automatically generate code connecting the modules to the framework in use and we will
provide tools to assist developers in implementing the interfaces they describe in their target language. If, for example, they
will be coding in C++ we will generate a complete header file and, optionally, the skeleton of its implementation to be
completed by the developer.

John Milford (LBNL) is developing a set of tools based upon an IDL compiler he has developed using the JavaCC and
JavaTree (**URLs needed here**) tools.

This model will allow us for example to replace a framework implemented in C++ with one written in Java, or vice versa,
without the need to touch any of the existing modules or to interchange user modules or other components written in different
languages without changing the interfaces to those components. Central to our software engineering approach will be the use
of open industry standards, of component software connected using a framework, designed in a manner which will allow us to
track the evolution of said standards.

The use of an interface dictionary enables us to distribute modules in different threads and processes using standard tools such
as CORBA itself. We don't anticipate at this time the need to have distributed physics analysis modules (although this may be
the case if we want to support the use a module being developed by a user on a remote client). On the other hand, we do see
the advantage of distributing some service modules, such as a remote object server for calibration tables; a remote event
display client receiving reconstructed event data from the framework; or a production master process managing a number of
reconstruction workers, monitoring their status, load balancing them, etc. (CORBA is already being used in a similar manner
in many HENP DAQ and online systems.). The most important service module that we will implement as a separate process
is the user interface. The ability to control and configure the framework remotely rather than from inside the application itself
will improve the UI (or GUI or Web-based User Interface) interactive response and it will make the framework more robust.

A common objection to the approach of using an interface dictionary is the additional burden it imposes on the developer who
has to learn yet another language and use yet more tools. We believe that if the language is an industry standard like IDL, this
burden is minimal and in any case more than balanced by the advantages mentioned before. If, as it seems likely, Java will
become a popular language among the HENP developers in the next few years, this objection may vanish altogether as Java
offers with its core libraries very good support for an interface dictionary, for distributed components and even for a multi-
language environment.

1.1.5 Management, Organization and Work Schedule

1.1.5.1 LBNL

We propose that Craig Tull be the project manager responsible for organization of the software effort (**this is text from our
last iteration. I would like to check with D.Quarrie on this phrasing. **). We present later a resource loaded work plan for
fiscal year 2000 as well as a list of project milestones through fiscal year 2005.

needs updating The selection of the control framework as LBNL-ATLAS computing's primary core domain of
responsibility are being made in close consultation with the overall ATLAS Computing Coordinator. This consultation is
ongoing and should result in an explicit agreement on LBNL's role, responsibilities, and deliverables. The ongoing
"architecture committee"3 is expected to set the plan and deliverables for this activity. There are two LBNL members (M.
Shapiro and D. Quarrie) on this committee and we have offered to provide resources to the committee to help it with
evaluation. The committee is expected to issue a final report by October 1999. Its minutes are available and we expect to use

3http://www.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/

8

these as input to the requirements document. Our planning assumes that the LBNL group has lead responsibility for the
control/framework. We expect to adjust our schedule and work-plan to accommodate the requests from the ATLAS
computing coordinator.

We will engage physicists in ATLAS and in other experiments in specification of requirements and in design and
implementation discussions. In particular, we will continue discussions with BaBar, CDF, CLEO, D0, and STAR researchers
with whom we have already had extensive discussion of these issues.

As well, we expect to draw upon US and non-US ATLAS collaborators in each of our test and documentation phases. Real-
world tests of the framework will provide the greatest volume of user feedback on the design and implementation of the
system as well as the most accurate and realistic QA and performance measures for the framework.

1.1.5.2 BNL

We propose to draw on our RHIC software experience at BNL to contribute to ATLAS core software development and
specifically to the implementation of distributed computing capability and support tools in the offline environment. These
tools will be distinct from and layered over the control framework (they are being developed in an experiment-independent
project) but closely integrated with it.

The size and geographical distribution of both ATLAS as a whole and US ATLAS make distributed computing support in the
framework essential: the ability to use the analysis framework interactively or in batch as a thin local client giving transparent
access to data and computing resources at a remote regional center. The rapid growth in network capacities and technologies
now underway make a powerful distributed computing capability both possible and practical to a degree not seen in previous
generations of HEP experiments.

The STAR BNL group is engaged in an internally funded (LDRD) project developing such distributed computing capability
in a form in which it can be applied to ATLAS as well as RHIC and other projects. This project, a Networked Object-based
enVironment for Analysis (NOVA), is now underway and has seen first application of its initial components in STAR
distributed database tools and ATLAS demonstration prototypes [ref].

BNL is responsible for much of the core software development activity of the RHIC experiments. For the STAR experiment,
overall computing management and the core software infrastructure development team are located at BNL. The BNL team is
responsible for the development of the STAR analysis framework now successfully deployed, which makes extensive use of
the ROOT analysis framework.

We are seeking support at the 1 FTE level to redirect computing professionals currently working on NOVA development and
STAR framework development to leveraging this work and experience into an ATLAS control framework contribution. Torre
Wenaus will supervise and participate in the work, with further contributions from other BNL physicists. Computing
professionals who will participate include Sasha Vanyashin and Victor Perevoztchikov.

1.1.6 Control/Framework Milestones

9

The major milestones for development of the Control/Framework Software up to the initial operations phase in 2006 are
given below.

1.1.6.1 Prototype Release (pre-Alpha): May 2000

Delivery of a prototype reconstruction framework based upon the architecture, delivering the following functionality:

• Support for the existing preliminary ATLAS event and detector descriptor models

• Support for multiple Modules merging several detector systems

• **etc.**

This prototype release will provide the first introduction for the ATLAS developer and user community to the overall
structure and interfaces of subsequent releases. **be specific that it will meet/exceed PASO functionality?** This will provide
a venue and context for discussions of the design, requirements, feature list, and use cases informing the work of the ATLAS
Architecture Team and LBNL control framework developers. It will also serve as a working framework and an interface
specification for testbeds and development efforts in associated domains and detector subsystems.

1.1.6.2 Test Release #1 (Alpha): September 2000

This release will demonstrate the basic functionality of the package. We expect it to be adequate for use by application code
developers but not for casual users. A preliminary version of the application interfaces will exist, but these interfaces will not
yet be frozen. The functionality in this release will include: dynamic loading of I/O and analysis modules, run time
specification (via a configuration script) of the order of module execution, and the ability to process events through multiple
analysis paths and to discontinue event processing based on the filter decisions signaled by the modules. The release will
include an interface to at least one Analysis Tools Package that allows for the creation of histogram/ntuple files but it may not
support interactive use of that Analysis Tool from within the Framework. Framework and module configuration information
will not be permanently recorded to a file or database in this release.

Task Name
Draft reqs. complete

Compl. initial framework survey

Req. document complete

Requirements review

Freeze CORE language

Alpha release design review

Alpha release

Freeze CORE architecture

Freeze database interface

Freeze platforms for MDC

Beta release design review

Beta release

Freeze distributed architecture

Vers. 1.0 design review

Vers. 1.0 release

MDC start

Freeze platforms for production

MDC complete

Production release review

Production release

Data taking starts

8/27

2/1

2/1

3/1

3/29

6/29

9/28

3/29

3/29

6/4

7/2

10/1

4/1

7/1

9/30

6/2

7/4

1/2

4/5

7/2

7/1

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
9 2000 2001 2002 2003 2004 2005 20

10

1.1.6.3 Test Release #2 (Beta): October 2001

This release should be adequate for early testing by physicists who are not core participants in application development. We
expect all I/O interfaces to be finalized by this time. The additional functionality relative to the Alpha release includes support
for recording Framework and Module configuration information to a flat file or database and the ability to reconfigure from
that file, an interactive interface to at least one Physics Analysis Tool, support for an abstract interface to additional graphical
applications (such as event displays) and support for a set of module and Framework monitoring tools that allow developers to
gather statistics on CPU usage, memory usage, etc. This release need not support multithreading nor support tools for
distributed configuration across multiple clients. A Graphical User Interface (GUI) is not a milestone for the Beta release.

1.1.6.4 First Production Release: October 2002

This release is expected to be fully functional and adequate for production operations. It will support multithreading and will
include a Production Manager that can be used to control distributed applications. GUI support will be included.

1.1.6.5 Final Production release May 2004

This release will incorporate design and implementation revisions arising out of the ATLAS Mock Data Challenge and other
experience with the software. After this time, no major modifications are envisioned and a maintenance phase is entered.

1.1.7 Control/Framework Plan in FY00

A preliminary resource loaded schedule for development of the Control/Framework software by LBNL personnel in FY00
only is given below. (** I have not altered this from the original. It will need some tweaking.**)

11

A more detailed description of the tasks and milestones is given below.
Project Management

Project management will consist of coordinating effort within the control framework project and between the control
framework project and other software projects within ATLAS.

Developer Support
Software developers in the control framework project will require support for development tool installation and
maintenance, maintenance and integration with the ATLAS software development environment, etc. We have also
included here the 0.25FTE of support needed for Physics simulation and related items.

Define requirements
We will define a set of requirements for the control framework which do not pre-suppose a particular architecture or
solution. These requirements will be defined in cooperation with the ATLAS Architecture Workgroup and with input
from ATLAS physicists. A requirements section of the design document for the ATLAS control domain already exists
and can form a starting point for this document. These requirements will be the measure of the suitability of the control
framework design for ATLAS.

Survey existing frameworks and architectures
There are several examples of existing frameworks for large applications both HENP specific (e.g. AC++, Gaudi,
OpenScientist, PAW/Root, StAF) and non HENP specific (especially those based on the various component architectures)

Task Name
Project Management

Developer Support

Define requirements

Survey existing frameworks/arch

Survey technologies

Draft reqs. complete

Evaluate dictionary language

Evaluate core language

Domain decomposition

Development tools

Compl. initial framework survey

Req. document complete

Requirements review

Freeze CORE language

Code generation tools

Flow control

Analysis tools interface

Document Alpha release

Alpha release design review

Test Alpha release

Alpha release

Database interface design/proto

Freeze CORE architecture

Freeze database interface

Tull[10%]

Milford[50%]

Tull[15%],Hinchliffe[10%],Shapiro[10%],Vacavant[10%]

Calafiura[15%],Leggett[15%],Vacavant[15%]

Tull[10%],Calafiura[10%],Milford[10%]

8/27

Tull[15%],Calafiura[15%]

Calafiura[15%],Leggett[15%]

Tull[50%]

Calafiura[33%],Vacavant[33%],Leggett[33%]

2/1

2/1

3/1

3/29

Calafiura[20%],Milford[40%],TBN[20%]

Tull[50%],TBN[50%]

Leggett[33%],Vacavant[33%]

All

6/29

All

9/28

TBN[75%]

3/29

3/29

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2000 2001 2002 2003 200

12

that try to address similar issues than the ones concerning us. We will survey them to extract every possible relevant
requirements, design patterns and implementation choices.

Survey existing & upcoming technologies
We will survey the three major component architectures (CORBA, DCOM and JavaBeans) and their evolution to
determine which of them we should adopt as our (model for a) software bus technology

Evaluate dictionary language candidates
We will evaluate the most convenient meta-data languages to describe the framework interfaces to the external world and
to the software bus (e.g. IDL, ODL, SWIG, XMI, proprietary)

Evaluate core language candidates
Although there seems to be no doubt that on a time scale of three-four years most of the algorithmic code of ATLAS will
be written in C++, this does not determined a priori which programming language we should adopt for the framework
core. We will evaluate possible alternatives (Java) to determine whether they offer enough extra features to make up for
the extra complication due to multiple languages issues. Also we will evaluate the impact of a possible future change in
the core language of choice and try to deign the framework to minimize it.

Domain Decomposition
We will identify sub-domains of the framework that can be designed and implemented in parallel by separate individuals
and/or teams.

Development Tools
We will determine which tools to use for the design, the development, the code maintenance and the documentation.

Code Generation Tools
We will evaluate which area of the framework implementation can be automated by generating code from the framework
interface description. We will use existing tools (e.g. SWIG) and/or custom developed ones.

Execution Flow Control
We will develop tools to control the execution flow both via scripting languages (and possibly configuration files) and an
interactive user interface

Analysis Tools Interface
We will provide a platform independent interface to multiple histogramming tools (e.g. PAW, ROOT, JAS) allowing the
physicist to analyze the data accessible from the framework with her preferred physics analysis tool

Document Alpha Release
The Alpha release will include sufficient documentation for testing evaluation of the design and for testing of the system
by non-developers.

Test Alpha Release
The Alpha release will be tested for functionality and for bugs by both software developers and by physicists.

Database interface design & prototype
We will define an interface to the ATLAS Data Model that will allow transparent access to the data whatever their
location and storage technology in use will happen to be.

13

1.2 Data Access and Management Software

Crucial to the success of the ATLAS experiment will be its ability to deal with enormous data volumes – petabytes of data
annually – in a reliable and efficient way. The U.S. has been asked to provide overall database leadership, and coordination
of database efforts in two of four ATLAS subsystems. The following sections outline how we propose to discharge these
responsibilities. With recognized expertise in scalable data handling (cf. the PASS (Petabyte Access and Storage Solutions)
project and the High Energy and Nuclear Physics Grand Challenge project), and the combined experience of BaBar, the
Fermilab experiments, and the Relativistic Heavy Ion Collider experiments, the U.S. is well positioned to make significant
contributions to ATLAS in this area.

1.2.1 Scope of the ATLAS Data Access and Management Domain

The data access domain encompasses both the infrastructure needed to manage, organize, store, and retrieve petabytes of data
efficiently, and the design, instantiation, deployment, and maintenance of concrete stores for physics data.

Infrastructure components include, for example:

• control/database interfaces, and generic database components needed to support those interfaces;

• transient/persistent interfaces;

• physical data clustering and storage optimization;

• data organization and indexing for rapid retrieval;

• infrastructure for distributed database development;

• infrastructure for distributed data access by physicists;

• tertiary storage access and management;

• database coding rules and endorsed practices.

Infrastructure work further encompasses assessment, prototyping, and scalability testing of proposed approaches and
technologies for data storage and access.

Among the concrete physics data stores are:

• the event store, which includes many layers of simulated, raw, and reconstructed data behind a unified event access
interface (see the ATLAS Computing Technical Proposal for additional detail);

• detector description stores, which include geometry conditions databases, calibrations and alignments

• run conditions

• trigger databases

• statistics and analysis stores, which support production logging and the user-specific output of individual physicists'
analyses.

While fabrication production databases fall under the purview of the ATLAS construction project, interfaces between offline
software and fabrication production databases must also be defined, developed, and supported (offline analysis, calibration,
and diagnostic software may require access to detector construction information).

The distinction between infrastructure and physics data stores is, of course, not a precise one, and there are many essential
components that fall squarely on the boundaries between infrastructure and physics content. Event collection management,
for example, and more generally, indexing and physical clustering for efficient retrieval, involve both the machinery by which
data are organized, requested, and delivered, and event-specific content.

14

1.2.2 U.S. Leadership

David Malon of Argonne has been asked, along with RD Schaffer of the Laboratoire de l'Accelerateur Lineaire, to provide
leadership to ATLAS database efforts. This role entails more than responsibility for implementation and delivery of specific
components of the database architecture. It requires

• oversight and participation in the design of database components for which primary implementation responsibility
will lie outside the U.S.;

• participation in the specification and design of non-database components whose database implications are
substantial, such as detector description and event model;

• participation in the specification and design of interfaces between offline and production databases.

While the U.S. leadership role in overall ATLAS global database efforts entails responsibilities beyond those associated with
specific U.S. deliverables, it also provides strong advantages -- it can serve to ensure that U.S. database efforts are, from their
inception, well integrated into global ATLAS computing plans.

Database coordinators for two of the four ATLAS detector subsystems also come from U.S. institutions. Tom LeCompte of
Argonne is the tile calorimeter database coordinator. Steven Goldfarb of the University of Michigan is the muon spectrometer
database coordinator.

1.2.3 Current Efforts

Current work in the database arena is proceeding primarily along the following fronts:

Event data access

This ongoing effort involves making subsystem hit and digitization data from the (FORTRAN/Geant3 based) simulation
effort in support of the combined performance technical design report available through the current provisional object-
oriented reconstruction and analysis framework known as PASO.

Detector description

While this is not formally a database task, it is a required precursor both to any detector description database and to further
(Geant4 based) simulations. The current effort involves providing an XML specification for detector geometry; it is being
driven by the database domain, and subsystem-specific work is being done and/or coordinated by the respective subsystem
database coordinators.

Infrastructure for distributed database development

For a variety of technical reasons, checking out and building database code is significantly more complicated than checking
out and building non-database code. Current efforts involve providing a unified and exportable SRT-based framework for
using and developing database code, and support of the PASO framework based on data stored in Objectivity/DB.

Production use of Objectivity/DB

Thanks to a pilot project begun in the late spring of 1999, U.S. database efforts have delivered what is the only current
production use of Objectivity/DB in ATLAS. The software, which provides access to tile calorimeter testbeam data, supports
an innovative detector-centric view of the data, and serves as a testbed for several transient/persistent mapping strategies
simultaneously. For details, see
http://www.cern.ch/Atlas/GROUPS/SOFTWARE/INFO/Workshops/9908/slides/thu.3/index.htm, [**convert to reference**]
or the Proceedings of the International Conference on Computing in High Energy and Nuclear Physics (CHEP 2000) (to
appear).

1.2.4 Planned U.S. Database Efforts

1.2.4.1 Database Infrastructure

Steal this from the current document

15

The most important components to emphasize are infrastructure for distributed database development and deployment, and
data access mechanisms (and Objectivity-resident data!) in support of the prototype control framework whose development is
centered at LBNL.

1.2.4.2 Efforts based on existing data stores

Event data from the TDR

U.S. emphasis will be on calorimeter data, in support of Brookhaven's lead role in object-oriented liquid argon reconstruction
and the University of Chicago's role in tile reconstruction (Frank Merritt is the tile reconstruction coordinator). We expect
much of the effort to come from the subsystem software projects, with infrastructure to make the data available through the
prototype framework coming from core database efforts.

Test beam data

We expect to use the tile calorimeter test beam data as a testbed for production use of Objectivity and for evaluation of
transient/persistent mapping strategies. Associated development and extensions of current software capabilities will be
undertaken by the tile calorimeter group.

1.2.4.3 Database efforts in support of simulation

We propose a staged approach to providing data access and storage for Geant4 simulations, roughly in the following order:

1. Monte Carlo events

2. Geant4 hits

3. Geant4 digitizations

4. Detector geometry

Objectivity-based access to Monte Carlo events will provide an input source to Geant4 simulations, will deliver one
component of an eventual ATLAS event model, and will serve as a foundation for development of event collection
management capabilities. Such an effort is well matched to ongoing U.S. responsibilities (Ian Hinchliffe of LBNL is in
charge of Monte Carlo generators for ATLAS), and to work being done at Harvard and Boston University on ISAGEN.

Support for storage and retrieval of Geant4 hits and digitizations must be provided in a timescale corresponding to subsystem
use of Geant4 for serious simulation. Delivery of such support will provide the impetus to the ATLAS database domain to
address the handling of user-defined object types, and to the overall software effort to further articulate an ATLAS event
model.

Definition, prototyping, and implementation of database support for Geant4 hits and digitizations will be undertaken in
conjunction with the global subsystem simulation efforts for which the U.S. has responsibility: the inner detector, for which
Fred Luehring of Indiana University is responsible, and the liquid argon calorimeter, for which Misha Leltchouk of
Columbia University is responsible.

Providing XML descriptions of detector geometry is an ongoing effort as described above, with much of the coordination and
labor coming from subsystem database coordinators. While it is possible to read XML data more or less directly into Geant4
using Stan Bentvelsen's G4Builder code, the work of building a geometry database, with its ensuing advantages and
complications, must follow. We propose to continue U.S. involvement in the definition of an XML DTD for detector
description, and to participate significantly in the specification of a generic model for detector description that must in turn be
supported by a database.

To ensure integration into global ATLAS simulation efforts, U.S. core database work will be undertaken in conjunction with
David’s submission ended at this point

16

1.3 Core Software Effort

The tables below show separately the requests for computing personnel to be supported by U.S. ATLAS Computing and the
planned contributions of physicists supported by the base program.

1.3.1 Requested Computing Personnel (supported by US ATLAS) for Core Software

WBS ANL LBNL BNL

2.2.1.1 Control/Framework
Software

Craig Tull 1.0

John Milford 0.75

Laurent Vacavant 0.5

New Hire 0.85

Sasha Vanyashin 0.5

Victor Perevoztchikov 0.5

2.2.1.2 Data Management
Software

David Malon 1.0

Guy Pandola 0.5

John Christiansen 0.5

Michelle Kehrer 0.5

Postdoc (D. Gunter?) 0.5

David Quarrie ?? New Hire 1.0

1.3.2 Physicists supported by base program working on Core software

WBS ANL LBNL BNL

2.2.1.1 Control/Framework
Software

I. Hinchliffe 0.5

M. Shapiro 0.2

P. Calafiura 0.6

C. Leggett 0.6

T. Wenaus 0.75

2.2.1.2 Data Management
Software

T. LeCompte 0.5

E. May 0.6

R. Wagner 0.5

R. Blair, L. Price, and
others 0.4

S. Protopopescu 0.1

S. Snyder 0.1

S. Rajagopalan 0.5

17

2 Subsystem Specific Software

The ATLAS computing group has recently been reorganized. This new organization reflects an emphasis on subsystem
specific software. There are now four coordinators from each detector subsystem representing simulation, reconstruction,
database and offline software, with the US (in bold) appropriately represented in these responsibilities:

Offline Coordinator Reconstruction Simulation Database
Chair N. McCubbin D. Rousseau A. Dell’Acqua D.Malon/RD Schaffer
Inner Detector D. Barberis D. Rousseau F. Luehring J. Pater
Liquid Argon J. Collot J. Schwindling M. Leltchouk S. Simion
Tile calorimeter A. Solodkov F. Merritt A. Solodkov T. LeCompte
Muon G. Poulard J.F. Laporte A. Rimoldi S. Goldfarb
LVL2 trigger S. Tapprogge
Trigger/DAQ S. George T. Hansl-Kozanecki H.P. Beck
Event Filter V. Vercesi F. Touchard

The US groups have been active in all areas of subsystem specific software and plan to continue to play a crucial role in
developing the software needed to extract physics results from the ATLAS detector in 2005. The details of the software efforts
of each subsystem will be explained in the sections below. In general, each subsystem has an interest in developing software
in the following areas:

• Detector simulation with Geant4, the new OO simulation toolkit;

• Test beam analysis to verify Geant4;

• Reconstruction software in C++ that runs in the new ATLAS control framework.

In addition, a number of subsystems are active in the database software. Efforts relating to database and control framework
software will couple closely to the strong US activity in these core domains, eg. with activities in pixel simulation and LAr
reconstruction to serve as testbeds for the evolving control framework.

2.1 Silicon Tracker

The main activity in the silicon tracker software is related to the development of the pixel test beam simulation using Geant4.
Other limited activities concern the old legacy software.

2.1.1 Pixel Test Beam Simulation with Geant4

The pixel subdetector simulation, which was performed so far with the Geant3 package, has now to migrate to the Geant4
simulation tool. This transition implies two major activities: the redesign of the software using an object-oriented paradigm
and the validation of the algorithmic part (mainly the physics) of Geant4.

Like most of the other subsystems, the pixel group has chosen to start this transition process with the test beam simulation.
This choice allows consideration of almost all aspects of this transition while dealing with a small scale project. Furthermore
it offers the unique opportunity to test the new simulation tool against real data already accumulated and to come from the
pixel test beam facility.

Many tests have already been performed using this test beam setup and more are planned in coming years. The telescope
setup includes a set of micro-strip detectors (usually four planes of double-sided detectors) to measure the position, some
scintillators and a silicon diode to trigger the data acquisition. The pixel chip or pixel module is placed in a supporting device
allowing for spatial translations and rotations. The whole setup is exposed to a high-energy particle beam in the H8 area of
the North Hall at CERN and can be placed in a magnetic field.

The test beam simulation project aims to be a testbed for the whole ATLAS pixel system simulation which is to come next
year. As such, many parts presently being developed for the test beam simulation will be re-used for the pixel system: the

18

architecture layout, the pixel module geometry, the user-defined material management and physics interaction processes, the
appropriate tracking and stepping classes, and the digitization, as well as a wide set of interfaces for utility software
(histogramming, visualization, GUI).

2.1.1.1 Status

The project being relatively small and well defined, a pragmatic approach has been adopted, based on frequent iterations to
improve both the design and the functionality of the software.

On the geometry side, the third software iteration led to a configuration which is almost the definitive one. It is already as
complete as the previous Geant3 description, with a design allowing easy reconfiguration (of the telescope setup for instance).

The implementation and test of the physics interactions and of the tracking inside the material have started. The work is now
concentrating on this part.

A new C++ digitization package is also under development. Most of the functionality of the previous one is already available.
An interface to the ATLSIM framework allows for intensive checks to be performed within the complete old software chain
(simulation + reconstruction).

Finally, a documentation effort is being pursued, with a dedicated web-site for the project
(http://maupiti.lbl.gov/projects/ptbg4).

2.1.1.2 Short term plan

Iterations over the code will be continued. The short term issues are the inclusion in the simulation of the pixel module (only
single chips were simulated with the Geant3-based test beam simulation) and subsequently the preparation of the first public
release of the software, expected for January 2000.

2.1.1.3 US involvement and collaboration

LBNL is in charge of the whole project. Participation of other institutes from Europe is expected for the module simulation
and for the comparison with test beam data. Participation from other US institutions is open.

2.1.2 Activities with old legacy software

No real software development activity is taking place in this area. However, there is some participation in maintaining this
software.

Some studies are performed using this software and encompass both the simulation and the reconstruction domains in order
to provide the various groups (mechanics, electronics) with specific studies since the new OO software is not yet available.For
instance, the simulation is being used to check the geometrical acceptance of the pixel end-cap layout, and the reconstruction
to study the impact of misalignment of the pixel disks which might be induced by the cooling system.

2.1.3 Future activities

For FY00, the pixel test beam simulation effort will be pursued. It will focus on the comparison of Geant4 to the test beam
data and to the Geant3 simulation. Meanwhile the overall design will evolve, easing the transition of the effort towards the
simulation of the whole pixel system.

The first goal of this design evolution is to integrate this project in the ATLAS framework which is being developed
concurrently: it is intended to take advantage of the LBNL involvement in the latter to transform this simulation project into
an application prototype of the framework.

Although the project will initially evolve on its own during the initial phase of the framework development, care will be taken
to avoid divergent developments, for instance by adopting in an early stage appropriate application program interfaces. The
actual integration with the pre-prototype of the framework will occur before its delivery, expected for May 2000. The
integration of the test beam analysis code could be a natural extension of the project.

The on-going work at other institutes in the database/detector description domain will also be considered since it will be an
important issue for the whole system simulation.

19

All these activities will help to smoothly ramp up the simulation effort for the whole pixel system during the year. Some
coordination with similar Geant4 efforts for SCT will be maintained.

In early FY01, refinements of the Geant4 description of the pixel system will be continued. The comparison with test beam
data will in particular be used to ensure a correct simulation of the pixel modules and for the module system tests. At this
time, the framework will be in a much more mature stage and a parallel effort should have taken place on the simulation side
to guarantee a good integration.

2.2 TRT

2.2.1 Past and Present Effort

1. Overall responsibility for GEANT simulation of the Barrel TRT performance (rates, occupancies, signal shapes, etc) (F.
Luehring/ IU).

2. TRT Software Coordinator, ID Simulation Coordinator and TRT database contact (F. Leuhring/ IU).

3. Wrote the entire section of the ATLAS TDR about TRT simulation studies (all except the TR performance) (F. Leuhring/
IU).

4. Geant simulation and data analysis of the TRT test beam studies (A.Manara/ IU).

5. ATLAS testbeam software development and maintenance (F. Luehring/IU; P.Keener/ UPenn).

6. ATLFAST simulations of charged Higgs discovery potential. Published two ATLAS notes (K Assamagan/ HU).

7. Materials budget and simulations of the effects on materials on the ATLAS performance (F. Luehring/ IU).

8. Analysis of barrel TRT testbeam data (V. Vassilis, S. Oh, C. Wang, W. Ebenstein/ DU; F. Luehring, H. Ogren/ IU)

2.2.2 Future Plans

1. Geant4 simulation of ATLAS and the TRT specifically

2. Physics simulation using ATLFAST++ (**belongs in Physics section**)

3. Analysis of future testbeam data

4. Analysis of simulated data

5. Use of neural networks to improve e/pi separation in the TRT.

2.3 Liquid Argon

2.3.1 Simulation

The U.S. has played significant role in the LAr simulation in Geant3 and the study of the calorimeter response. This has
primarily been done at Nevis, Brookhaven and Arizona. The results of these studies have been documented in the recently
publiched Physics Technical Design Report. Some of the contributions by US physicists in the LAr Simulation in Geant3 and
which have been published in the Physics Technical Design Report are :

• Simulation of the narrow strips in the first sampling and the optimization of strip width based on pi0 rejection and
pointing studies.

• Optimization of accordion shape for minimal phi-modulation.

• Determination of the optimal depth and granularity of each of three samplings for different lead thicknesses.

• Simulation of the dead material in front of calorimeter and optimization of cryostat wall shape.

20

The new simulation activities are now focussed toward the usage of object oriented methodology. The Geant4 toolkit allows
us to do just that.

In the new formation of the Liquid Argon software organization, Mikhail Leltchouk from Nevis Laboratories has been named
the coordinator of the ATLAS LAr simulation effort. He is therefore responsible for coordinating and integrating the LAr
simulation effort worldwide. This, together with extensive responsibilities in the LAr construction effort, makes it natural for
the US to contribute extensively to the LAr simulation effort. The US is expected to be a major contributor to the simulation
of the LAr electromagnetic calorimeters, cryostats and coil (at Nevis and BNL) and the Forward Calorimeter (at Arizona).
This includes work in detector description, simulating the detector geometry, digitization, extensive tests to validate the
geometry, and study of the response of the calorimeter in different environments. Current work has already started in
understanding how to simulate the accordion structure in Geant4.

Current Personnel involved are: J. Dodd, M. Leltchouk, B. Seligman, M. Seman (Nevis); P. Nevski, I. Stumer, F. Lanni
(BNL); P. Loch, M. Shupe (Arizona).

2.3.2 Reconstruction

The BNL and Arizona groups have already taken a lead role in the development of an OO reconstruction algorithm. A first
version of the code has been produced and discussed at CERN meetings. The present code implements the infrastructure for
the LAr reconstruction and implements basic clustering algorithms. Future work includes providing a general calorimeter
reconstruction framework that includes the Tile Calorimeter for cluster finding, calibration and test beam analysis. We expect
to make significant contributions to the analysis of simulation and test beam data using this reconstruction software. This
framework will also be used to validate any online software such as calibration algorithms which will run in real-time in the
LAr read out drivers.

Personnel involved are H. Ma, S. Rajagopalan, F. Lanni (BNL); J. Parsons, S. Boettcher (Nevis); B. Cleland, J. McDonald
(Pittsburgh); P. Loch (Arizona).

2.3.3 Database Activity

The significant Reconstuction and Simulation activity involves some participation in establishing the interfaces and providing
access to external information from user software. The ability to read and write Event information into databases should also
be possible. The person responsible for establishing the Detector Description parameters required for simulation and other
database related interfaces for the Liquid Argon subsystem is Stefan Simion from CERN. Nevis is exploring the possibility of
hiring Stefan Simion which will allow a tight integration of the interfaces between these closely related efforts, and
exploitation of the significant areas of overlap.

With the recent success of the Tile Calorimeter Pilot Project at ANL, dealing with the ability of storing test beam data into
Objectivity and retrieving it for subsequent analysis, the US LAr software group is looking into the possibility of launching a
similar project with the help and experience of the Tile personnel.

Personnel involved are M. Leltchouk (Nevis); S. Rajagopalan (BNL) **more added later?**

2.3.4 Test Beam Activity

BNL, Nevis, Arizona, Pittsburgh, and SMU are involved in the current test beam activity. Software activities include the
development of test beam algorithms and analysis to understand the response of the calorimeter. The test beam provides the
right environment for the study of the detector response and systematics for establishing corrections for offline reconstruction.
The possibility of using a common offline framework for analysis of test beam, simulation and real data is currently being
explored. We are also investigating the possibility to coordinate efforts with the Tile calorimeter to launch a project to read
and write data from an OO framework into Objectivity. Personnel involved includes nearly everyone from all the above
institutions.

2.3.5 Calibration

Pittsburgh, BNL and Nevis have taken lead roles in the past in the development of optimal filtering algorithms. We are
planning to be involved in the development and study of online calibration procedures and optimization of these algorithms.

21

This work needs to be closely coupled with the offline work and test beam. While the test beam is the natural place for testing
all calibration algorithms that are developed, the evaluation and verification of online algorithms should be handled by offline
software frameworks. The long term goal is to become involved in the offline physics calibration issues for the analysis and
realization of physics in ATLAS.

Personnel involved are J. Parsons, S. Boettcher, M. Leltchouk (Nevis); B. Cleland, J. McDonald (Pittsburgh); P. Loch, J.
Rutherfoord (Arizona); F. Lanni, D. Lissuaer, H. Takai, S. Rajagopalan, H. Ma, I Stumer (BNL).

2.3.6 Detector Response and Physics studies

The US groups have contributed significantly to the study of the response of the Liquid Argon subsystem and its impact on
physics signatures. These studies have been published in the recently published Physics Technical Design Report. An
example of one such study is the ability of the Liquid Argon calorimeter to reconstruct clusters that do not point back to the
vertex. Such a possibility exists in some super-symmetric models where a photon is created from a decay of a long lived
super-symmetric particle and hence would not point back to the interaction vertex. Special clustering algorithms were written
by physicists from Nevis and BNL in order to study such signatures. The US will continue to play a major role in studying
such issues and the impact that they will have in our ability to extract physics.

2.4 Tile Calorimeter

2.4.1 Tile Calorimeter Pilot Project

The primary software effort of the Tilecal group over the last 9 months has been the Tilecal Pilot Project. This was the
creation of a new test-beam analysis system, using C++, OO design, and an Objectivity data base for the offline analysis of
test beam data. The purpose of the project was to gain practical experience with C++ and Objectivity, and to allow further
software development to be done in a framework compatible with the final ATLAS analysis system. At present, all the initial
objectives

of the Pilot Project have been accomplished, and the new C++ code has all the functionality of the old "Tilemon" system.
This has been largely the work of David Malon, Bob Wagner, and Tom LeCompte of Argonne.

Future developments of the Pilot Project will proceed along several lines:

1) Optimal filtering (see below)

2) Further improvements in structure of code and classes.

3) Improvements in existing online documentation

4) Added functionality (e.g., using LHC++).

2.4.2 PASO

The "Provisional Analysis Skeleton for Object-oriented" ATLAS software development is the current temporary framework
for developing reconstruction code. Several members of the Tilecal group attended a tutorial workshop on this in November,
and we are now developing a transient data record for the "full ATLAS" Tilecal system.

Our hope is to be able to read Geant3 tapes by the February 2000 software workshop, to have a preliminary definition of the
major Tilecal classes, and to have begun the reconstruction of Tilecal clusters from the Geant3 tapes.

We have had preliminary discussions with the US-LAr group about common structures for the "cell" and "cluster" classes,
and both groups agree this is an important goal. We will be meeting with LAr software people at Brookhaven in January, and
will develop more detailed plans then. At present, it seems highly desirable to combine forces for a least a portion of the
reconstruction effort, and to have a common framework for reconstruction to the fullest extent possible.

22

2.4.3 Monte-Carlo work

Tom LeCompte is currently developing the representation of the Tilecal module in XML. It is clear that there must be a
concerted Geant4 effort in the near future, but there are no specific plans for this at present.

2.4.4 Optimal Filtering work for full-ATLAS reconstruction as well as for test beam work

 "Optimal filtering" is the process of extracting the best energy deposition for the beam crossing which produces a trigger,
by using the measured energy for this crossing as well as the energies of the preceding 3 crossings and the following 3
crossings. Richard Teuscher (Chicago) is developing and testing a method for this, and it appears that we are close to having
an optimal precedure for Tilecal in the high-intensity ATLAS environment.

The Tilecal test-beam analysis provides a useful benchmark for this work. Although the testbeam does not have a comparable
spill structure, and the time-slices which are read out are not synchronized with the particle interaction, nevertheless this is
useful both for studying improvements in Tilecal energy resolution and for measuring the precise time-shape of the Tilecals
signal under field conditions. Early work on this was done by Andy Hocker, and is being continued by Ambreesh Gupta
(both from Chicago).

2.5 Muon Spectrometer

2.5.1 Level 2 muon trigger simulation

The Muon level 2 trigger studies have been ongoing for many years now and involve collaboration between groups at BU,
Harvard, MIT and UM. The results of the Boston muon level 2 trigger simulation package have been reported in ATLAS-
DAQ-99-003. BU and Harvard are currently working on integrating this FORTRAN stand-alone program into the official
ATLAS software, atrig, using the ATLAS code management system (CVS/SRT). Harvard undergraduate student, Chris
Slowe, is working on a C++ implementation of the algorithm, which will be included in the Trigger Reference Software. The
code is in atrig now and we are currently subjecting it to extensive tests, leading up to production running for the Trigger
Technical Proposal which will be published in spring 2000. This production running will use BU’s Origin 2000 and the BNL
ATLAS Regional Center Linux boxes. The main study we will do is the overall rejection of level 2 over level 1. So far, no
study has been done on the correlations of level 1 and level 2. This is a potential problem area because low Pt tracks, which
mistakenly pass the level 1 trigger, may also pass the level 2 trigger, especially in regions where the integral B field is small.
We will also study the efficiency of the level 2 for specific high Pt muon physics channels. We have been working closely
with ATLAS trigger community: Traudl Hansl-Kozanecki (Saclay) and more recently with Stephan Tapprogge (CERN) on
the atrig and Reference Software work, as well as Aleandro Nisati and the Rome trigger group.

2.5.2 The AMBER reconstruction package

We plan to further develop the muon track reconstruction package, AMBER. This is a C++ package designed using modern
object oriented techniques and reviewed by the ATLAS community. It currently needs porting to Linux and algorithm
improvements so that its performance matches that of the old FORTRAN muon reconstruction package. It will also need
modifications to fit into the new control framework software being developed by ATLAS and interfaces to the detector
description and Geant4.

2.5.3 MDT auto-calibration software

The UM group will develop the muon MDT auto-calibration software package for ATLAS. We will set up, develop the
required interfaces, and test the entire chain of the muon simulation and reconstruction based on Geant4. Responsible
individuals are Shawn McKee and Dan Levin. We have developed the auto-calibration code and tested it for barrel muon
MDT geometry, and will carry out more studies for the end-cap MDT chambers. We have the Geant4-based muon system
simulation software up and running.

23

2.5.4 Muon Database Software Activities

2.5.4.1 Responsibilities

Steven Goldfarb is currently serving as task leader for the ATLAS muon database system. In this position, he is responsible
for the development and maintenance of the event model and detector description database for the muon system, including the
software necessary for accessing and storing the data, as well as mechanisms linking the data stores with conditions data
(calibration and alignment), and its integration within the overall ATLAS framework.

This work includes the coordination of database software development for the various muon subsystems (MDT, RPC, CSC,
TGC, services), as well the organization and construction of a common framework and utilities for the complete muon
system. More specifically, it involves the development of mechanisms capable of extracting and translating data between the
persistent data store and the generic transient model, and the provision of interfaces between these objects and the application
software, including simulation, reconstruction and analysis.

A description of the muon database task is available at [http://home.cern.ch/muondoc/software/Database/TaskDefinition.ps].

2.5.4.2 Accomplishments to date

Steven’s initial work concentrated on the development of the muon detector description
[http://home.cern.ch/muondoc/software/Database/Meetings/Status-19990413]. This included:

• development of a hierarchical geometry model for the RPC subsystem based on an existing model for the MDT
subsystem;

• construction of the associated positional transformation and logical identifier mechanisms;

• implementation of software to extract simulated Geant3 digits for the MDT and RPC subsystems from the existing
data stores into the current event model;

• development of mechanisms for the verification of the detector description positional transformations for the
simulated digits.

More recently, Steven has worked closely within the ATLAS database group in developing the AGDD (ATLAS Generic
Detector Description) model based on XML (eXtensible Markup Language)
[http://www.cern.ch/Atlas/GROUPS/DATABASE/detector_description]. This work has included:

• consultation with the development team during the construction of the model and co-authoring of the most recent
DTD (Data Task Definition) file [/afs/cern.ch/atlas/offline/DetectorDescription/AGDD/data/AGDD_2.01.dtd];

• development of example barrel muon station geometries in XML and the subsequent presentation of these examples
in a tutorial to the muon detector community
[http://home.cern.ch/muondoc/software/Database/Meetings/MuonTutorial-19991116];

• construction of Geant4 geometries from the XML examples, demonstrating completion of the full chain from the
XML data through the generic model to Geant4 volumes;

• motivation of commitments from each of the major muon subsystems for the development of the detector description.

The University of Michigan, in particular, has committed to providing the complete description of the MDT subsystem
geometry in XML.

2.5.4.3 Work in progress

Current muon database efforts are focused on the following immediate tasks:

• translation of the existing AMDB (ATLAS Muon Data Base) detector description into XML for each of the muon
subsystems;

• porting of the existing testing mechanism for the MDT and RPC event model and detector descriptions to the PASO
(Provisional Analysis Skeleton for OO-ATLAS) framework
[http://www.cern.ch/Atlas/GROUPS/SOFTWARE/OO/applications/Paso];

24

• construction of a muon-specific interface between the generic model and the Geant4 simulation software.

An evolutionary development plan has been mapped out and presented to the muon detector community
[http://home.cern.ch/muondoc/software/Database/Meetings/Status-19990914].

2.5.4.4 Future development

The current stage of development for the XML detector description calls for the exact translation of the existing AMDB
description, followed by a period of testing and evaluation to ensure the replication of previous results before the elimination
of AMDB. Continued development of the subsystem descriptions will require active involvement by the detector experts. This
will be an ongoing responsibility for each of the subsystems, but will require significant coordination on the part of the task
leader.

The presence of additional manpower to aid in this domain would allow the task leader to provide a more complete
framework for development and testing. Specific tasks to be carried out could include:

• construction of automatic mechanisms for extracting geometrical data from the muon layout database to the XML
description;

• development of utilities for testing the XML description for internal consistency, consistency between the subsystem
geometries, and consistency with the layout data;

• provision of a more extensive testing mechanism for the positional transformations of the generic model.

Development of a preliminary interface between the Geant4 simulation and the generic model of the detector description is
planned for spring, 2000. Geometries constructed through this interface will be tested against those currently obtained using a
direct extraction of the AMDB parameters. Completion of the remainder of the simulation interface will begin shortly after
the evaluation period. In addition, the construction of interfaces connecting the muon reconstruction software to both the
detector description and the event model will be started later in the year. This will include the development of mechanisms
for the extraction and storage of event data, such as simulated digits, hits and reconstructed objects. Usage of test beam data
to evaluate the storage and access of data for analysis is previewed for the following year.

In this case, the presence of additional manpower would be greatly beneficial for the development and testing of the
simulation and reconstruction interfaces. Specific tasks could include:

• addition of functionality to the Geant4 interface to facilitate tuning between (processor-intensive) Geant4 volume
parameterizations and (memory-intensive) volume instantiations;

• investigation of mechanisms to provide partial or complete geometries “on-demand” for muon reconstruction and
tuning of the level of detail provided by the description;

• extensive testing of the data storage and extraction mechanisms using muon test beam data stored in Objectivity/DB
data stores.

2.5.4.5 Long term plans

In the coming four years, the muon database task must provide a complete and working system, including the data access and
storage mechanisms mentioned above, as well as a number of well-tested interfaces to the application software. The final
product must also include software for the access and storage of the conditions data, as well as mechanisms to link this data
(typically time-dependent calibration and alignment parameters) to the event and detector description.

While a clear plan exists for the construction of the framework software and the coordination of the subsystem contributions,
the presence of additional manpower during the development would ensure the presence of extensive testing and evaluation of
the database software. Such testing is vital when one considers that much of the technology to be used is new to our field.
Furthermore, usage of this new technology may provide unforeseen possibilities which warrant investigation. For example,
while the linkage of conditions data to the detector description is foreseen, one may wish to provide similar mechanisms to
access pertinent detector data currently being stored in the subsystem facbrication production database. Close coordination
between the two systems from the outset, including testing and evaluation, would certainly be greatly advantageous for stress
testing the US ATLAS computing effort.

25

The University of Michigan therefore requests funding for an additional two software physicist/programmers to contribute
full-time to the muon database task. Work on the muon database by Steve Goldfarb and the two requested
physicist/programmers, along with the growing involvement of Shawn McKee and Dan Levin in this area as their hardware-
related work stabilizes, will constitute one portion of the Michigan contribution to the overall software effort. In addition, our
planned work in the areas of ATLAS simulation and reconstruction, along with the continuation and expansion of our
collaborative tools activities, are expected to form the basis for a strong local US ATLAS computing activity at Michigan.

2.6 Things falling between the cracks?

The background calculations of UA and NIU.

Combined reconstruction: MUID combining tracks from ID, Cal , Muons.

26

3 Software Support

[To mostly move to PMP]

Closely allied with the US ATLAS Tier 1 Computing Facility at BNL will be a software support effort to provide current,
tested installations of ATLAS offline software on ATLAS platforms, for use at the Tier 1 facility and at other US facilities
mirroring the Tier 1 installations. While the support for third party and community software employed by ATLAS – such as
Objectivity and the LHC++ suite – will rest with the Computing Facilities organization, support for US installations of the
ATLAS offline software itself will be a responsibility of the Software organization. Charging Software with this responsibility
ensures that the support function rests organizationally most closely to both the expertise base of the ATLAS offline software
and the community best able to provide oversight and set the program and priorities of the support operation.

The support function will include maintenance of US installations of core offline software and subdetector specific software
for all subsystems. A help-desk function primarily for US-specific software installation and usage issues (with referral to the
ATLAS help services for more general issues) will be included. Allocation of support effort and facility resources in terms of
what versions are maintained in the US on what platforms at what level of support will be determined by prioritizations set by
the US ATLAS offline software user community.

The support operation and its oversight must be closely coupled to the Tier 1 facility. The principal support person will be the
Software Librarian. Oversight of the support function will be performed by a Software Support Coordinator reporting to the
Software Manager. Both Librarian and Coordinator will have close interaction with Facility personnel and both should reside
at BNL. The Software Support Coordinator should be an experienced and active software developer who can gather the
support requirements and priorities of the US community and accordingly prioritize and direct the work of support personnel.

27

4 References

5 Appendices

Specific requests for $ for institutes

