
ATLAS DISTRIBUTED ANALYSIS

D. L. Adams, W. Deng, BNL, Upton, NY, USA
N. Chetan, C. Kannan, V. Sambamurthy, SUNY, Stony Brook, NY, USA

K. Harrison, University of Cambridge, Cambridge, UK
C. L. Tan, University of Birmingham, Birmingham, UK

A. Soroko, Oxford University, Oxford, UK
D. Liko, F. Orellana, M. Branco, CERN, Geneva, Switzerland

C. Haeberli, University of Bern, Bern, Switzerland
S. Albrand, J. Fulachier, LPSC, Grenoble, France

J. Lozano, F. Fassi, IFIC, Valencia, Spain
G. Rybkine, Royal Holloway College, University of London, Egham, UK

Abstract
The distributed analysis system for the ATLAS
experiment is described. Although the system is under
construction and the design is still evolving, the major
components have been identified. A generic analysis
service interface provides the connection between a
choice of user environments and a selection of engines
capable of carrying out the distributed processing. Other
services provide access to catalogs, files and software.

INTRODUCTION
ATLAS [1] is a large high-energy physics collaboration

constructing a detector that will acquire data from
collisions taking place in the Large Hadron Collider
(LHC) at CERN. ATLAS will read a few petabytes per
year from the detector into an offline production system
that will produce a similar amount of data.

Goals
ADA [2], the ATLAS Distributed Analysis system, will

enable ATLAS physicists to analyze this data and to carry
out production of moderately large samples. Another
important goal is to provide provenance tracking, i.e. to
provide a reliable and comprehensible record of the chain
of processing behind any piece of data. Finally, the
system must perform well and be easy to use and access
from the expected analysis environments (python [3] and
ROOT [4]) and flexible enough to adapt to other
environments that might later be of interest (e.g. JAS [5]).

Status
ADA is under active development and this note

describes a snapshot of the current status, a summary of
our plans for this year and some thoughts on later
evolution. Much of the ADA model and underlying
software is inherited from DIAL [6]. A user interface is
being developed by GANGA [7] and metadata services by
AMI [8].

Applicability
Although ADA is being developed in the ATLAS

context, the underlying software packages such as DIAL,

GANGA and AMI have little dependence on the ATLAS
software. Care is taken to keep the entire system generic
to allow use in other contexts that provide the required
data and application wrappers.

JOB DEFINITION LANGUAGE
To facilitate provenance tracking and provide a friendly

interface, ADA makes use of a high-level job definition
language to describe the data and its processing. This
AJDL (Abstract Job Definition Language) [9] provides
generic definitions of the fundamental processing
components: datasets, their transformations and the jobs
that carry these out.

Properties
In order to determine the properties of these

components, we examine how they are used both by our
analysts and by a processing system. We distinguish
between the inherent properties of a component and the
metadata associated with it. The former are stored in
XML strings that describe these objects while the latter
are held externally, e.g. in relational tables.

A fundamental property of all components is their
identity. It must be unique within the relevant scope to
ensure there is no ambiguity in the provenance chains and
other references expressed in terms of these identities.

The AJDL components and their properties are
summarized in table 1. The following sections provide
details for the individual components.

Table 1. Summary of AJDL types and their properties.

Dataset ID, location, content
Sub-dataset ID’s

Transformation ID, application ID, task ID
Application ID, build_task script, run script
Task ID, embedded named files
Job ID, transformation ID, input dataset

ID, result dataset ID, sub-job ID’s,
job history parameters

Job
preferences

ID
List of name-value pairs

Mutability At present, the task carries a collection of embedded
named text files. We anticipate adding named parameters
and providing support for logical files. We say that an object is immutable if its inherent

properties cannot be altered. We identify three interesting
states of mutability: immutable, fully mutable and
extensible. In the latter case, new properties may be added
but existing properties may not be changed. Most objects
will be immutable to maintain the integrity of provenance
chains. Some objects are mutable or extensible
temporarily during construction.

The present definition of the application includes two
entry points (scripts): build_task which is used to prepare
the task and run which carries out the actual
transformation.

The essential provenance of a dataset is specified by the
input dataset and transformation used to produce that
dataset. For physical datasets, these (and other job
conditions) are recorded as part of the job history. If a
user submits a virtual dataset, then the processing system
will typically construct a virtual dataset from the output
dataset. The mapping from input virtual dataset and
transformation to output virtual dataset is recorded a
virtual data catalog. This catalog is similar to the one that
appears in Chimera [11].

Datasets
Analysis proceeds as a series of steps where some

action is taken on a collection of data to produce another
collection. We call such a collection a dataset [10]. Note
that the data itself is not one of these properties—when
we speak of a dataset, we mean a description or
specification of that data and not the actual data. It may be useful to add specification of input and output

dataset content to the transformation to allow users and
the processing system to discover incompatibilities
between an input dataset and a transformation.

One natural property of a dataset is its location, i.e. the
location of the actual data. This location may be
expressed in many ways; one of the most common being
a list of logical files. We allow for the possibility that a
dataset does not have a location and call such a virtual
dataset. A virtual dataset may not yet have a concrete
representation or it may serve as an index into a dataset
replica catalog.

Jobs
A job is a particular instance of a transformation acting

on a dataset. The properties of a job include its definition
(transformation and input dataset), its state (submitted,
running, done, failed, etc.) and its history (start and stop
times, computer where it was run, CPU, Memory and I/O
consumption, etc.). A completed job or one with a partial
result provides a link to its output dataset.

Another important dataset property is content, meaning
a description of the type of data it holds. For particle and
nuclear physics applications, a particularly important
class of dataset is the event dataset which holds the data
associated with a series of events. A complete description
of the content for such a dataset includes the list of event
identifiers and a description of the type of data for each
event.

Jobs are hierarchical with a sub-job structure
corresponding to the substructure of the input dataset. The
structure may be even more complicated if sub-jobs are
resubmitted after failure or additional jobs are introduced
to carry out splitting or merging. Datasets are hierarchical, i.e. one of their properties is a

list of contained datasets. This structure provides natural
boundaries for dataset splitting. ATLAS plans to construct
dataset hierarchies with the lowest-level datasets
corresponding to single files.

Job Preferences
AJDL also provides a job preferences component that

allows users some control over job processing. Examples
include hints or requirements for data placement, splitting
and merging and fault handling. Or a user might supply
constraints for response times or a maximum budget for
the processing. The job preferences are not part of the
essential provenance and are stored as part of the job.

Dataset operations
Operations to construct datasets include creation,

splitting, merging, and transformation. A dataset may be
created from any collection of data and one common
activity is to construct a dataset from all the data in a
single file. Splitting distributes the data from one dataset
over multiple datasets while merging does the converse.
Transformation is defined to be an operation that takes
one dataset as input and produces one as output.

XML representation
ADA makes use of the present DIAL implementation of
AJDL. DIAL defines each component as a C++ class or
class hierarchy. Each class provides means to write out to
and read back from an XML description. We plan to
formalize the definition of AJDL in terms of XML
schema in collaboration with GANGA and others.

Transformations
The only operation provided by the distributed

processing system of ADA is the transformation. There is
implicit splitting of the input dataset and, after processing,
merging to create the output dataset. The transformation
is split into two sub-components: the application that
provides a wrapper around the domain-specific (i.e.
ATLAS) software and the task that carries data used to
configure the application.

Services
We have identified a number of services that act upon

the AJDL components and are standardizing their
interfaces in WSDL.

ANALYSIS SERVICE
DIAL defines a C++ interface called scheduler for

defining and running jobs. This interface provides
methods for installing applications and tasks and
submitting and monitoring jobs. DIAL also defines a web
service interface called analysis service with similar
functionality, and provides wrappers using this interface
to enable requests to be relayed from a client scheduler on
one machine to a scheduler running inside a web service
on a remote node.

ADA has adopted the analysis service as the interface
by which clients submit requests for processing. Figure 1
shows the initial plan for the ADA architecture. There are
three major options for the analysis service, based on
DIAL, ATLAS production [12] and ARDA [13].

ROOT PYTHON

AMI DBS DIAL AS ATPROD AS ARDA AS

LSF, CONDOR gLite WMSATPROD DB

AJDL

sh SQL gLite

AMI ws

AJDL

Figure 1. High level view of the ADA architecture
showing the two types of clients, the catalog services and
the three major analysis services

DIAL
DIAL provides schedulers for local processing (fork)

and for batch submission to LSF [14] or Condor [15]. It is
easy to add new job classes to describe other batch or
workload management systems. An important goal of the
DIAL project is to provide services with interactive
response, i.e. those for which result begin to flow back
within a few seconds after submission. Options for such
processing include a specially tuned LSF queue and use
of Condor COD (Computing on Demand).

ATLAS production system
It is planned to add an analysis service which submits

jobs to the ATLAS production system. A DIAL job
subclass will be added to connect to the database that
serves as the interface to that system.

ARDA
ARDA is a project to deliver prototype distributed

analysis systems for the four LHC experiments. These
systems will be based on gLite [16], the EGEE
middleware. For ATLAS, the prototype includes an
analysis service submitting jobs to the gLite WMS

workload management system). A simple implementation
of this service exists for the initial gLite prototype. The
first release of the gLite software is expected this year and
the ARDA team will quickly follow with a corresponding
analysis service. The first version of this service will also
be based on DIAL, again by adding an appropriate job
subclass.

The motivation for adding the ARDA service is the
expectation that EGEE will deliver a robust and reliable
workload management system capable of scaling to
ATLAS requirements for a worldwide grid.

CATALOG SERVICES
ADA recognizes the need for catalog services to

provide persistence for AJDL objects, enable users to
select from existing objects and to record replica and
provenance information.

Types of services
DIAL defines three C++ interfaces for cataloguing:

repository, selection catalog and replica catalog. ADA
makes use of all of three: repositories for all AJDL types
and, at least for datasets, selection and replica catalogs. A
repository stores XML object descriptions indexed by ID.
A selection catalog associates named attributes (metadata)
with object ID’s. A replica catalog associates one logical
ID with a collection of replica ID’s.

Web services
We would like to define web service interfaces for the

three types of catalogs. AMI already provides a web
service interface but it is a very generic catalog interface
and we plan to supplement it with these more restrictive
interfaces. The metadata catalog interface identified by
the gLite is a candidate for the selection catalog.

OTHER SERVICES
In addition to the catalog and analysis services visible

to the user, processing requires access to services for data
and software package management.

Data Management
DIAL defines an interface called file catalog that

provides an interface for storing and retrieving physical
files identified with logical names. There are
implementations based on a local filesystem, NFS, AFS
and magda [17]. The latter is used for data from the first
ATLAS data challenge. New production data is accessible
though DQ (Don Quijote) [18], a client-service
application developed within ATLAS. ADA is adopting
DQ as its data management interface and a corresponding
file catalog implementation will be added to DIAL.

Package management
DIAL makes very few assumptions about the software

used to carry out processing except that the software must
be wrapped in the DIAL application interface. This
wrapper (usually implemented as scripts) must locate

software when it runs on a worker node. Most of the
current grid production systems preinstall software and
then use environmental variables or an information
service to advertise its location.

IN \ OUT EVTIDS EVGEN HITS DIGITS RAW ESD AOD TAG NTUP HISTO

IDBLD DAQ
EVTIDS GEN
EVGEN G4SIM G4SIM G4SIM
HITS DIGI DIGI DIGI
DIGITS PACK RECO RECO RECO
RAW UNPACK
ESD AODBLD
AOD SELECT TAGBLD ANALYZE ANALYZE
TAG SELECT
NTUP ANALYZE ANALYZE

Figure 2. Identified ATLAS transformations. Categories
for input and output datasets are shown the left column
and upper row, respectively

Both DIAL and ADA would like to move to a service-
oriented model with a generic interface that could support
multiple strategies for software management and enable
installation on demand. This issue has been raised with
ARDA and gLite. ADA is developing packagmgr [19] as
an interim solution.

ROOT and python clients are available providing the

full DIAL functionality as described earlier. These and
the above analysis services and the combined ntuple
transformation are the basis of demos available in the
latest DIAL release.

USER INTERFACES
ADA provides its users with easy access to data and

processing. It is integrated with ROOT and Python and
provides graphical and command line clients.

ROOT
CONCLUSIONS DIAL is implemented in C++. The ROOT tool ACLiC

has been used to parse the DIAL header files and
construct a dictionary which makes all the DIAL classes
available at the ROOT command line. Users can create
and examine applications, tasks and datasets and use the
scheduler interface to submit and monitor jobs.

ATLAS has established a framework for a distributed
analysis system with continuing contributions from
DIAL, GANGA and AMI. Over the next couple months
ADA will define the required catalogs, provide dataset
description of ATLAS production data, and add the
required suite of corresponding transformations. Analysis
services will be deployed at different sites to enable user-
level production and analysis.

Python
ATLAS also supports python as an analysis framework.

Analogous to the approach with ROOT, lcgdict from
SEAL [20] has been used to parse the DIAL headers and
construct dictionaries that map the DIAL classes to
python classes. This has been done in the context of the
GANGA project.

ACKNOWLEDGEMENTS
Many useful discussions that have taken place within

PPDG, ARDA and the ATLAS database and production
groups. We gratefully acknowledge support from the U.S.
DOE through PPDG, PPARC via GridPP, CERN,
University of Bern, the IFIC computing grid group and
IN2P3/CNRS.

GANGA is also interested in delivering a lightweight
client that removes the dependency on the DIAL C++
classes.

Graphical interface
REFERENCES ADA will provide its users with a graphical interface to

aid in examining data and specifying, submitting and
monitoring jobs. This work is also being done by
GANGA making use of the python binding to DIAL.

[1] http://www.cern.ch/ATLAS.
[2] http://www.usatlas.bnl.gov/ADA.
[3] http://www.usatlas.bnl.gov/PAT.
[4] http://root.cern.ch.
[5] http://jas.freehep.org. CURRENT STATUS
[6] http://www.usatlas.bnl.gov/~dladams/dial.

ADA is operational but is in demo mode. Much of the
persistency is missing and most of the transformations
required for ATLAS have not yet been defined.

[7] http://ganga.web.cern.ch.
[8] http://atlasbkk1.in2p3.fr.8180/AMI.
[9] D. Adams, “AJDL: Abstract Job Description

Language”, version 0.30 (2004). See ADA [2]. There are two analysis service instances running at
BNL: one for long-running jobs and one that provides
interactive response. ADA has clients to enable use of the
AMI service but little of its data is resident there.

[10] D. Adams, “Datasets for the Grid”, version 5 (2003).
See ADA [2].

[11] http://www.griphyn.org/chimera.
All of the reconstructed data from the first ATLAS data

challenge are available as ADA datasets. A
transformation uses PAW to create histograms from that
data. The user task to configure this transformation
includes a list of histogram definitions and a FORTRAN
routine to do the event processing.

[12] http://www.nordugrid.org/applications/prodsys.
[13] http://lcg.web.cern.ch/LCG/peb/arda.
[14] http://www.platform.com/products/LSF.
[15] http://www.cs.wisc.edu/condor.
[16] http://egee-jra1.web.cern.ch/jra1.
[17] http://www.atlasgrid.bnl.gov/magda/info.

Figure 2 shows the transformations required to fully
support the current ATLAS data model. Only a couple
prototype transformations, DIGI and RECO, are in place.

[18] http://mbranco.cern.ch/mbranco/cern/donquijote.
[19] http://www.pp.rhul.ac.uk/~rybkine/packagemgr.
[20] http://seal.web.cern.ch/seal

	ATLAS DISTRIBUTED ANALYSIS
	INTRODUCTION
	Goals
	Status
	Applicability

	JOB DEFINITION LANGUAGE
	Properties
	Mutability
	Datasets
	Dataset operations
	Transformations
	Jobs
	Job Preferences
	XML representation
	Services

	ANALYSIS SERVICE
	DIAL
	ATLAS production system
	ARDA

	CATALOG SERVICES
	Types of services
	Web services

	OTHER SERVICES
	Data Management
	Package management

	USER INTERFACES
	ROOT
	Python
	Graphical interface

	CURRENT STATUS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

