Requirements on software installation

Grid Application Group

LHC Grid Computing Project
Requirements on software installation

	
	Document identifier:
	LCG-GAG-SOFINST

	
	Date:
	6/10/2004

	
	Authors:
	D.Adams (BNL)
D.Barberis (CERN/Genoa),
L.Bauerdick (FNAL),
I.Bird (CERN),
N.Brook (Bristol),
S.Burke (RAL),
P.Buncic (CERN),
F.Carminati (CERN), 
P.Cerello (INFN),
F.Donno (CERN/INFN),
D.Foster (CERN),
F.Harris (CERN/Oxford),
S.Lacaprara (INFN),
L.Perini (INFN),
A.Pfeiffer (CERN),
R.Pordes (FNAL),
A.Sciabà (CERN/INFN),
O.Smirnova (CERN/Lund),
J.Templon (NIKHEF),
A.Tsaregorodtsev (IN2P3)

	
	Editors:
	F.Carminati (CERN), J.Templon (NIKHEF)

	
	Document status:
	Version v0.5 – Draft


	Abstract: This document contains common requirements for software installation.


Table of contents

21
Introduction

2
General statement of the problem
2
3
Software implementation issues
4
3.1
Heterogeneity
4
3.1.1
Local configuration
4
3.1.2
Hardware/OS
5
3.2
Installation on demand and pre-installation
6
3.3
Package dependencies
7
3.4
Software and files
7
3.5
Software publication format
8
4
User requirements
8


1 Introduction

Experiment software installation in a Grid environment is more complicated than on a local system, mainly due to the heterogeneity of a distributed environment. This note contains the common view from the four experiments on the requirements on software installation. Although the experiments have already provided these requirements, this note is an updated version of them and supersedes previous common statements. The experiment experience during the 2004 Data Challenges have provided an important input to these requirements.

2 General statement of the problem

The jobs of the experiments need some software proper to the experiment (hereon software) to be present on the computing system where they run. This consists of programs in various forms (source, object files, archive or shared libraries, executables etc.), usually small configuration files and other ancillary files. This software is subdivided in one or more packages. Packages can depend on each other and on external software, such as common software for the four experiments (e.g. ROOT, POOL, GEANT4, FLUKA) or system components. Each package is released in subsequent versions, identified by a Tag. No assumption is made on the structure of these tags, which are alphanumeric strings, even if it is quite possible that they are standardised in some way. Usually part of the tag is numeric so that dependencies between packages can be expressed by arithmetic inequalities. In the following the generic term software is synonymous of one or more packages, unless otherwise specified.

In the following we will mention several times the concept of “validation procedure”. A validation procedure is an executable (script or program) that is run after that the software is installed and that provides a binary result. If it ends successfully, the installation is considered validated, and therefore successful. If it terminates unsuccessfully, then installation is considered as failed and problem tracking begins. The validation procedure is entirely defined by the experiment, and we make no assumption on its quality or thoroughness in testing the software installed. In general the validation procedure is expected not to take too many resources, but there may be cases where this assumption is violated.

This document deals with software that has a certain level of commonality between a group of users. In this sense we do not intend to cover software that is needed by a single user in her work. Should the system turn out to be flexible enough to be used also by single users, it would be interesting to consider also this application.

In each collaboration there exists a role, which can be assumed by one or more persons, called Experiment Software Manager (ESM). Subgroups within a VO may have their own ESM, with privileges limited to the software that is common to the members of the subgroup. In the following we present typical scenarios of software management.

Software Installation

An experiment has developed a new version of a package and wants to install it on the computing resources of the Grid so that it is available to the users.

1. ESM assigns a tag to (tags) a new version of the software. This includes all the files necessary for the collaboration jobs to use this software, the Tag under which this software will be recognised and a validation procedure
. The tag may also include dependencies on other tags, but this will be discussed in more detail later;

2. ESM publishes this information so that it is known by the Grid;

3. The appropriate Grid service makes sure that the software is present and validated on each site where the Workload Management System (WMS) sends a job to be executed.

Software deletion

The general scenario for this use case is the following. An experiment has determined that a given version of the software produces wrong results, and therefore it has to be removed so that no new results are produced with it. The use case can then be:

1. ESM publishes a deletion of a given tag;

2. The appropriate Grid takes whatever action is appropriate following this notification. In practice this means that the corresponding tag can be removed from the list of available tags and that the space possibly occupied by the corresponding software on the various centres can be reclaimed.

a. A possible modification of this point is that the ESM can ask that the tag be removed immediately from the list of available tags.

b. The experiment may provide a cleanup procedure to be run upon tag deletion.

3. Jobs requesting this version of the software are not guaranteed to run anymore on the Grid.

Other scenarios can be imagined, however these are almost all obtainable by the previous two, even if this may not be, by far the best way to do that. Two examples are reported below.

Tag displacement

A small problem is found with a software release and new software is issued, to be published under the same tag. This is logically equivalent to tag software deletion and software installation with the same tag.

Tag aliasing

The same version of the software is pointed to by two different tags. This can be realised via two different Software Installations of the same software with the two different tags.

These examples are not to be considered requirements, but are here only for illustration purposes. Some of the experiments in fact deprecate such practices and they may possibly ask the system to explicitly prevent them.

The general high-level requirement for software installation can be formulated in the following way:

The software installation system should ensure that an experiment is not hindered using an otherwise available resource just because the requested version of published software is not present there.

While this requirement captures the very essence of what we want, it may turn out to be too general to be really useful. It is therefore worthwhile to go into some details of how this objective can be achieved.

3 Software implementation issues

In the following we will discuss various issues about software installation. We do not want to dictate implementation aspects, but rather to indicate what are current practices of experiments in this area.

3.1 Heterogeneity

There are two main aspects affecting the software installation procedures: heterogeneity of local configuration and of hardware and Operating System (OS). Here is how these are usually handled.

3.1.1 Local configuration

The software can be installed in different places on the different computing centres. Experiment software is usually “relocatable” in the sense that the top-level directory can change from system to system. There is a standard way to locate a software package. How this is done is an implementation issue. Examples are:

1. A procedure that accepts as argument a tag and returns the top directory where the software is located;

2. An environment variable whose name contains package and tag name in a standard format, pointing to the top directory (something like VO_ALICE_ALIROOT_V3_4).

What can be more problematic is the location of different elements of the OS. For instance the location of a compiler may vary on different systems. However this can be also be found out via a mechanism similar to the one described above. Some standardisation may help here to avoid each system manager to maintain a complicated configuration database.

One point closely related is the user environment. Once the software is installed, the user job landing to a WN usually needs a running environment to be set in order to use it. As an example there are environment variable such as $PATH, $LD_LIBRARY_PATH and so on, or tools and scripts that can set these for the user. Usually the desired environment is obtained sourcing a script located in the experiment software area. The above locator mechanism should be enough to determine the location of the script. This should be part of the standard prologue for all jobs of a given VO.

One issue that has been debated at length is whether the installed software is on a shared area accessible to all Worker Nodes (WN) or it is installed on each WN. In reality this is not a concern for the users, as read-only files compose the software. Whatever mechanism ensuring that the software is found in the place found via the agreed mechanism is acceptable, irrespectively whether this is a shared directory or a local directory replicated on each WN or any solution in between.

One subtle point to consider in the case where the software is installed on each WN is the validation, which may need to be run on each WN. This may mean the usage of a large quantity of resources. It may also be very difficult to be achieved in practice. If validation is achieved via batch jobs, there may be no way to ensure that each WN has got a validation job, short of flooding the queue with a number of jobs larger than the number of nodes, which may not be an acceptable solution.

Another important point to consider with respect to local installation is what happens if the system software of a node is reinstalled, e.g. following a maintenance intervention. Shall we require that the installation and validation of all software be run? Whose responsibility is this? Should this be done preventively or only when a job requesting a given package is scheduled for this WN? We believe that most of these questions will be answered only when more practical experience will be acquired.

3.1.2 Hardware/OS

This is a more difficult problem to solve, and it depends on the installation strategy chosen by the experiments. Two extreme solutions, which have been implemented and seem to work, are:

· Prepare a completely self-contained tarball with binaries. Of course a different tarballs may have to be prepared for different combinations of hardware/OS. This works, however sometimes it may be necessary to include part of the system software such as compiler shared libraries.

· Send the code to be compiled. This of course may insure a better adaptation and optimisation to the local system, but it is much more dependent on system configuration. Just to mention one issue, making sure that the right version of all the compilers and interpreters needed is present, or making sure that the code works with all combinations available, may not be trivial.

For the moment the heterogeneity of the Grid is still limited, however it is probably bound to grow with time, so it will be important to be able to handle it transparently. This of course assumes that the code of the experiments is programmed as portably as possible.

3.2 Installation on demand and pre-installation

It is generally accepted that there are two main strategies for software installation, on demand and pre-installation.

Installation on-demand

The WMS schedules a job for a given CE based on an optimisation procedure. If the requested tag is not installed, the software installation on the given node or site is performed before the job is run. The WMS or the job itself can trigger the installation. Once the installation is performed, it is available to all users that will run on that CE.

In the simplest case a job can contain a prologue that checks the existence of a given software tag and then, if not present, install the software, either in user space or in a common area dedicated to this. Issues are the ability of a normal user to write in a common area and to publish tags for the site.

A more elegant approach would be to have a “service” that can install software on demand and on behalf of a user or of the WMS. This service should be able to run the experiment specific validation procedure. In case this fails the installation should be declared failed.

Such a service could maintain a queue of installation requests on a CE. Each new request would then be compared with the ones already in the queue to avoid two jobs requesting the same package from triggering two installations within the same area, with unpredictable results. We realise that here we are trespassing into implementation, but we want to give a concrete example of the functionality we need. Any other implementation providing similar functionality would of course be acceptable.

The requesting jobs should not be withheld from execution till its required software is installed. The service should intercept jobs upon their arrival to a CE, check their software requirements, fulfil them and only then let the job be scheduled for execution. Another option is to use the same mechanism as the data file prefetch used by the WMS.
Pre-installation

The ESM pre-installs the software on a number of centres. The simplest realisation of this is that the ESM sends batch jobs to the target centres. To avoid everybody being able to alter the software, the ESM is supposed to have special privileges. This may also allow her jobs to be given higher priority on the sites, as they are not supposed to take a large quantity of resources, and it is important that they are allowed to complete quickly, as they are in the position of enabling or denying access to a site for a VO. Not having roles in VO at the moment poses a problem. Either the ESM is a privileged user, and then she has a very small quota for running fast jobs, and cannot run normal jobs, or she is a normal user, in which case her installation jobs can sit for long time in queues competing with everybody else, and deploying a new version of software may be very long and painful.

Again a more elegant solution would be to have a Grid enabled service that could be asked to install software by the ESM on target CE’s. In the above scenario, this is achieved inserting in the installation queue of each target CE the request for the given tag. Jobs requesting this tag can then be sent immediately, and they will be retained on the destination CE till the installation ends successfully.

3.3 Resources needed by installation

As we said above, installation jobs are supposed not to need a large quantity of resources. However assumption may turn out to be false. Compilation of large quantities of code at high optimisation levels can be very expensive in CPU time and memory. Verification of the installed software can also be very expensive in resources. If this is the case, the installation would have to be scheduled taking into account the resources needed.

The indication of the resources required by the installation can be given directly by the ESM. This is obvious in the case where the installation is performed via a batch job, less evident when it is done via a “service”. Another source could be the Logging and Bookkeeping (L&B) service, where the information on the resource consumption of previous installations and verifications is stored.

3.4 Package dependencies

Usually a software package needs other packages in order to work correctly. In most cases not all versions of the needed packages are acceptable. This creates a tree of dependencies. Installation of a package at a CE can be successful only if all dependencies are recursively satisfied.

If the information provided by the ESM when publishing a new tag contains also the dependencies, then the installation service can take care of inspecting the dependencies and recursively install all the needed packages. There are several packages that perform these functions, however these are not Grid-enabled. A very nice example, simple and powerful is the fink software maintenance tool (http://fink.sourceforge.net/). Another example is the Zero-install system (http://zero-install.sourceforge.net/).
3.5 Software and files

It is tempting, and indeed very elegant, to consider the following scenario. A given software tag is described in the File Catalogue (FC) as a collection of files. These files will share the software Tag as metadata. When the WMS schedules a job to a site, the request for a given tag is translated into the request for an additional set of files. Pre-installation is nothing else than demanding replication of these files on a given CE. We think this option should be considered very attentively for its simplicity and because the whole machinery of the Data Management System (DMS) could be used in this case. We are however aware of the following issues:

1. Software files should go into a specific, CE dependent, location. This may be difficult to communicate to the DMS.

2. The concept of replica postprocessor should be introduced, i.e. a procedure that runs after that a set of files has been replicated. This is necessary for software validation.

In spite of the above difficulties, we think worthwhile to consider this mechanism.

3.6 Software publication format

We have used several times the term “the ESM publishes the software to the Grid”, however we never said how this is going to happen. This has to be negotiated between the experiments and the provider of the installation services. In general the ESM will indicate the location of the files and the corresponding tag, an installation and a validation script. If a general service is introduced, then all these components need some kind of standardisation, which however does not seem to be a major problem, once the right conventions are discussed and agreed between experiments.

4 User requirements

Given the above description, we are in the position to provide some more detailed user requirements for software installation.

1. There should be a Grid enabled mechanism allowing installation of the experiment software at a site, where by installation we intend:

a. Retrieval of the software files from a place indicated by the ESM;

b. Copy of the files on the target CE;

c. Run of the installation script provided by the ESM;

d. Run of the verification script provided by the ESM;

e. Upon successful completion of the previous point, a record should be published in the information system indicating that the tag indicated by the ESM and identifying the installed software has been successfully installed on the target CE. This tag should be available to the WMS as part of the matchmaking procedure.

It would be highly desirable that, before executing a., the installation mechanism could

i. Check that all needed dependencies are satisfied;

ii. Trigger installation of needed tags that are not installed on the target CE;

2. If the validation script runs successfully, subsequent jobs scheduled for the target CE should find the installed software in a directory that should be possible to determine via a standard procedure.

3. It should be possible to restrict usage of the installation mechanism only to the ESM of each experiment.

4. It should be possible for the installation mechanism to be invoked on demand either by a user job, even if the user has no right to do that directly, or by the WMS. Experiments will have to chose either this installation method or the previous one, as they are mutually exclusive.

5. The installation mechanism should have priority on normal user jobs, to ensure that software installation of a new tag can proceed quickly.

6. There should be the possibility via the same mechanism to remove a tag. This implies removal of the tag from the information system and flagging the space occupied by the corresponding files as available for reclaim.







� In this context we assume that the validation procedure is mandatory, however, as said later on, we make no assumption on its content or thoroughness.









1/9

