
 
 DRAFT 1 / 132
 

 
M idd leware  Pro to type  –  

Work ing  Document  
* * *DRAFT** *  

 
 

 

 Document identifier: xxx-xxx-xx-xxxx 

 Date:  

 Contributors: Predrag Buncic (CERN), Steve 
Fisher (RAL), David Groep 
(NIKHEF), Frederic Hemmer 
(CERN), Peter Kunszt (CERN), 
Erwin Laure (CERN), Miron 
Livny (VDT), Francesco Prelz 
(INFN) 

 Editors: Erwin Laure 

 Document status: DRAFT v0.17 

 
 

Abstract: This working document is used to break down the high level services defined by 
ARDA to actual components and tries to define the initial set of services provided by the middleware 
prototype, their interfaces, as well as the technology/systems exploited. A separate document maps 
these components to existing implementations coming from Alien, EDG, and VDT.  

The structure and initial AliEn input is taken from Chapter 5 of (the unpublished) Draft v0.2 of 
the ARDA document.  

 
 



 
 DRAFT 2 / 132
 

 

Issue Date Comment 

0.1 08-Dec-2003 First version (E.L.) 

0.2 16-Dec-2003 Added more recent AliEn description and general description of services 
from ARDA document (P.B.) 

0.3 17-Dec-2003 Added replica management description from Peter K. (E.L.) 

0.4 18-Dec-2003 Added R-GMA description from Steve F. (E.L.) 

0.5 19-Dec-2003 Re-ordered sections (E.L.) 

0.6 06-Jan-2004 Updated information section (SMF) 

0.7 12-Jan-2004 Added description of AliEn I/O (P.B.) 

0.8 12-Jan-2004 
Added contributions from Francesco Prelz on the “WP1” Network Server 
interface and the CE functionality that is obtained via CondorG/GRAM 
(E.L.) 

0.9 16-Feb-2004 Added initial data mgmt API from Peter K. (E.L.) 

0.10 23-Feb-2004 Added more input on data mgmt from Peter K. (E.L.) 

0.11 23-Feb-2004 Document re-structuring: previous work from Alien/EDG/VDT moved to 
appendix (E.L.) 

0.12 01-Mar-2004 More additions to Storage Elements and Data Mgmt (P.K.) 

0.13 03-Mar-2004 APIs and data types for CE and TaskQueue from Francesco including some 
background information for the annex (E.L.) 

0.14 04-Mar-2004 Information system and Monitoring added (S.F.) 
Appendix moved to sub-document (E.L.) 

0.15 04-Mar-2004 

Disclaimer added at the end of section 1.  
Added note on security before Section 3.1 
Added note on access service in Section 3.1.2 
Added disclaimer to Section 3.4. 
Added short description of CE in Section 3.10 (E.L.) 

0.16 07-Mar-2004 Implemented comments from David Groep, Francesco, and Predrag (E.L.) 

0.17 14-Apr-2004 

Removed subdocument (doesn’t work with office XP) 
Document restructuring: removal of images; ACLs, APIs moved to appendix 
Update of information & monitoring section (UK) 
Update of authentication & authorization sections (David Groep) 
Some comments from Cal Loomis and David Adams applied (comments not 
yet applied added as comment to the document).  
 

   

   

 



 
 DRAFT 3 / 132
 

 
CONTENT 

1 INTRODUCTION .................................................................................................................................. 2 

2 TERMINOLOGY ................................................................................................................................... 2 
2.1 API DEFINITION ................................................................................................................................ 2 
2.2 CONVENTIONS FOR DESCRIBING METHODS ..................................................................................... 2 
2.3 ERROR HANDLING............................................................................................................................. 2 

3 GENERAL DECOMPOSITION .......................................................................................................... 2 
3.1 API AND GRID ACESS SERVICE ........................................................................................................ 2 
3.2 .................................................................................................................................................................. 2 

3.2.1 Data Services API........................................................................................................................ 2 
3.2.2 Initial Components used for Prototype ....................................................................................... 2 

3.3 AUTHENTICATION............................................................................................................................. 2 
3.3.1 Privacy preservation ................................................................................................................... 2 
3.3.2 Initial Components used for Prototype ....................................................................................... 2 

3.4 AUTHORISATION SERVICE ................................................................................................................ 2 
3.4.1 An authentication and authorisation use model ......................................................................... 2 
3.4.2 Enforcement................................................................................................................................. 2 
3.4.3 Initial Components used for Prototype ....................................................................................... 2 

3.5 INFORMATION AND MONITORING SERVICES ............................................................................. 2 
3.5.1 Producer services ........................................................................................................................ 2 
3.5.2 Consumer Service........................................................................................................................ 2 
3.5.3 Resources..................................................................................................................................... 2 
3.5.4 Security ........................................................................................................................................ 2 
3.5.5 Example code............................................................................................................................... 2 
3.5.6 Initial Components used for Prototype ....................................................................................... 2 

3.6 JOB MONITORING ............................................................................................................................. 2 
3.7 JOB PROVENANCE............................................................................................................................. 2 
3.8 AUDITING SERVICE .......................................................................................................................... 2 
3.9 ACCOUNTING SERVICE ..................................................................................................................... 2 
3.10 SITE PROXY (WAS SITE GATEKEEPER) ............................................................................................. 2 
3.11 COMPUTING ELEMENTS.................................................................................................................... 2 

3.11.1 Initial Components used for Prototype................................................................................... 2 
3.12 WORKLOAD MANAGEMENT ............................................................................................................. 2 

3.12.1 Initial Components used for Prototype................................................................................... 2 
3.13 DATA SERVICES................................................................................................................................ 2 
3.14 STORAGE ELEMENTS ........................................................................................................................ 2 

3.14.1 Concepts .................................................................................................................................. 2 
3.14.2 Interface Overview.................................................................................................................. 2 
3.14.3 Storage Resource Management API....................................................................................... 2 
3.14.4 Posix-like File I/O................................................................................................................... 2 
3.14.5 Initial Components used for Prototype................................................................................... 2 

3.15 DATA SCHEDULING........................................................................................................................... 2 
3.15.1 Transfer Wire Protocol ........................................................................................................... 2 
3.15.2 File Transfer Service............................................................................................................... 2 
3.15.3 File Placement Service ........................................................................................................... 2 

3.16 FILE AND REPLICA CATALOG ........................................................................................................... 2 
3.16.1 Concepts .................................................................................................................................. 2 
3.16.2 Functional concepts ................................................................................................................ 2 
3.16.3 Issues, Discussion ................................................................................................................... 2 
3.16.4 Initial Components used for Prototype................................................................................... 2 

3.17 METADATA CATALOG ...................................................................................................................... 2 
3.17.1 File-based Metadata API........................................................................................................ 2 

3.18 PACKAGE MANAGER ........................................................................................................................ 2 



 
 DRAFT 4 / 132
 

4 REFERENCES........................................................................................................................................ 2 

API DEFINITIONS......................................................................................................................................... 2 
API AND GRID ACESS SERVICE ............................................................................................................. 2 
INFORMATION AND MONITORING SERVICES ................................................................................................. 2 
COMPUTING ELEMENT ................................................................................................................................... 2 
WORKLOAD MANAGEMENT........................................................................................................................... 2 
STORAGE ELEMENT........................................................................................................................................ 2 
FILE TRANSFER SERVICE ............................................................................................................................... 2 
FILE PLACEMENT SERVICE............................................................................................................................. 2 
FILE AND REPLICA CATALOG ........................................................................................................................ 2 

POSIX ACLS.................................................................................................................................................... 2 
ACL TYPES .................................................................................................................................................... 2 
ACL ENTRIES................................................................................................................................................. 2 
VALID ACLS .................................................................................................................................................. 2 
CORRESPONDENCE BETWEEN ACL ENTRIES AND FILE PERMISSIONS .......................................................... 2 
OBJECT CREATION AND DEFAULT ACLS ...................................................................................................... 2 
ACCESS CHECK ALGORITHM ......................................................................................................................... 2 
ACL TEXT FORMS .......................................................................................................................................... 2 
RATIONALE .................................................................................................................................................... 2 
CHANGES TO THE FILE UTILITIES .................................................................................................................. 2 
STANDARDS.................................................................................................................................................... 2 



 

 
 DRAFT 5 / 132
 

1 INTRODUCTION 
 
During the ARDA workshop held at CERN on Dec. 3rd/4th 2003 it was decided to use the 
component breakdown and its mapping to AliEn contained in Draft v0.2 of the ARDA 
document as the working basis for developing a concrete component description and 
implementation recommendation for a middleware prototype that can be used by the ARDA 
project to implement end-to-end analysis systems.  
The attendees of the ARDA workshop were: 

• Predrag Buncic (AliEn) 
• Miron Livny (Wisconsin/VDT) 
• Francesco Prelz (INFN) 
• Torre Wenaus (LCG AA) 
• Peter Kunszt (CERN) 
• Frederic Hemmer (CERN) 
• Erwin Laure (CERN) 
• Steve Fisher (CLRC) 

 
Figure 1 shows the components described in the ARDA document: 

Information 
Service

Authentication

Authorisation

Audit ing

Grid 
Monitoring

 Workload 
Management

Metadata 
Catalogue

File 
Catalogue

Data 
Management

Comput ing 
Elem entStorage 

Element

Job 
Moni tor

Job 
Provenance

Package 
Manager

Grid Access 
Service

Accounting

Grid Access 
Service

User 
Application

Si te 
Gatekeeper

7: 
12: 

5: 
13: 

8: 15: 

11: 

9: 
10: 

1: 

4: 

2: 

3: 

6: 

14: 

 
Figure 1: The interaction diagram of key Grid components for typical analysis use case 

 
In the remainder of this document we detail the semantics of these services, derive an initial 
architecture and design of the services and their interplay, and present an initial API 
definition.  
 



 

 
 DRAFT 6 / 132
 

Disclaimer: 
This is a draft working document – many details reported in here are still open for 
discussion. The initial discussions centred around the CE, SE, and file and replica 
catalogs.  



 

 
 DRAFT 7 / 132
 

2 TERMINOLOGY 
The terminology listed here is a suggestion to be adapted throughout the ARDA prototype. 
The acronyms and names suggested below have been suggested through HEPCAL and 
HEPCAL-II  or emerged as the established names in the Grid community in the last couple of 
years. 
 
Logical File Name LFN Unique human-readable identifier of a Grid file. 
Global Unique ID GUID Unique identifier by construction for a file. Think of it as 

an inode. 
Storage Resource Manager SRM A service providing a management interface to mass 

storage. 
Storage URL SURL URI of a file on an SRM or at generic storage. The URI 

has the scheme ‘srm’ for files managed by an SRM and 
‘sfn’ for other files. 

Site  A Grid Site is an administrative domain providing 
computing and storage resources. 

Virtual Organization VO A set of Grid users characterized by common usage and 
access capabilities. Every Grid user belongs to at least 
one VO. 

Storage Element SE An SE provides storage to the Grid users. It usually has 
an SRM interface, but it can also be a simple FTP server 
or a SAN. 

Catalog  A catalog is a collection of data that is updateable and 
transactional. 

Dataset DS A dataset is a read-only collection of data. 
 
At this point the suggestion is to introduce an explicit distinction between APIs intended for 
the human Grid user and for the Grid middleware ‘user’. Humans have very different 
semantic expectations of APIs than automated services, so the exposed APIs are different and 
have different reasons to exist. 
 
User-Domain API The API intended for the human user. This includes the API 

provided to the application programmer, i.e. all high-level 
application specific tools and interactive processes should be 
implemented using this API. 

Middleware-Domain API The middleware at this point is being defined as grid services in 
the same grid layer, providing services to the end user by 
coordinating low-level grid services and basic computing 
resources. The Middleware domain API of a low-level service is 
being used by other middleware to achieve its higher-level task. 

Admin API This is also intended for the human user, but restricted to 
administrators. It is often useful to explicitly specify that certain 
APIs are only for administrative usage. 

 



 

 
 DRAFT 8 / 132
 

2.1 API DEFINITION 
In the API definitions below a set of needed functionalities and the way they are used in the 
scope of a user and administrator of a Grid Service are defined. Since this specification 
pertains to the usable prototype to be built, we decided to divide interface into three 
dimensions:  

• Structures (objects) to be exposed by the API. Some of the structures must be 
well defined to preserve semantics throughout the proposal, some may have 
placeholders to indicate dependence on other services APIs.  

• External API exposed to user,  
• External Commands - exposed as a command shell, usable by user already in the 

first iteration of prototyping. Usually wrappers of the equivalent Extenal User 
API calls or aggregation of these. 

 
Each of these dimensions subsequently covers following areas: 
• Regular user operations 
• Administrative operations  
• Middleware API used usually by other services to be discussed in other 

documents 
 

2.2 CONVENTIONS FOR DESCRIBING METHODS 
Note: the following is not yet consistent in the document; some APIs are still described 
in java and not using the common prefix; this will be changed in future versions of the 
document; a WSDL description of the service interfaces will also be provided in a later 
stage.  
 
We chose C as the language to describe the API because this is what we expect most of our 
users to be familiar with. It is straightforward to imagine the analogous API in java and C++ 
or other languages but this is the subject of a more detailed document once the API is more 
stable. 
Each method is prefixed with grid_ in order to distinguish them from system calls. This is a 
C specific notation, for java and C++ name-spacing is more appropriate. 
The security model is still not fixed, so some details might change that respect. For the basic 
methods described here we assume that the user has already authenticated to the service and 
that the service can enforce the user’s access rights based on either the authorization tokens 
passed, or the identity token used by an external authorization service, or by a context 
identifier that references an established service security context.  

2.3 ERROR HANDLING 
The error handling is uniform throughout all methods. Each method returns an error number. 
The error message can be retrieved through the grid_strerror method. 

• The error handling as described here is specific to C. It is possible to map error numbers 
and error messages directly into exceptions which is a more common error reporting 
model for java and C++. 

• The error mechanism is that of the unix system calls. Neither AliEn nor EDG have had 
this concept in their user API, however there have been many requests by the users of 
EDG to provide these semantics. The advantage is that it is well-known and is a de-facto 
standard. 



 

 
 DRAFT 9 / 132
 

TheAPI tables in the rest of the document describe each API, its input value and possible 
errors. The notes contain arguments why the call was chosen to be included in the 
specification and how it relates to AliEn and EDG as well as known issues. The table below 
describes the method to retrieve the error message based on an error number. 
 
 

Name grid_strerror 
Synopsis Retrieve string error message for a given error number. 

int errno Error returned by a call Fields 
char *buf Buffer to place error message in. 
GRID_EINVAL Not a valid error number Errors 
GRID_ERANGE Buffer not sufficient to store error message 

Notes The behavior is identical to the unix system call strerror. The error 
numbers and names are prefixed as well to distinguish them from the 
system errors. 

 
 



 

 
 DRAFT 10 / 132
 

3 GENERAL DECOMPOSITION 
 

From the analysis of the AliEn architecture and the services described in the ARDA 
document, we derive a decomposition of the following key services (as depicted in Figure 1): 

• API and corresponding Grid Access Service Component 
• Authentication, Authorisation, Accounting and Auditing services 
• Workload and Data Management Systems 
• File and Metadata Catalogues 
• Information service 
• Grid and Job Monitoring services 
• Storage and Computing elements 
• Package Manager and Job provenance service. 

 
In the following we give descriptions of the identified services, pointing out the 

interfaces they provide as well as potential technologies/systems to be (re)used for the 
prototype implementation.  

 
In the first phase of the prototype the focus will be on the following services:  

• API and Access Service (Section 3.1) 
• Authentication and Authorisation (Section 3.3 and 3.4) 
• Information Service (Section 3.5) 
• Site Gatekeeper (Section 3.10) 
• Computing Element (Section 3.11) 
• Storage Element (Section 3.14) 
• Workload Management (Section 3.12) 
• Data Scheduling (Section 3.15) 
• File Catalogue (Section 3.16) 
• Metadata Catalogue (Section 3.17) 

 
More Services will follow in the future phases of the project.  
 
A note on security: 
It is generally understood that Grid computing requires a security model that allows 
individual users to access resources based on privileges granted directly to her, granted via 
membership in one or more Virtual Organizations (VO), or granted via membership in groups 
within those VOs. For VO based access rights the VO is responsible for assigning group 
membership to users, but in all cases resource providers must have the ability to trace, and 
ban, individual users, groups or VOs. Moreover, these authorization decisions must be based 
on a trustworthy authentication mechanism that allows end-user traceability. It is preferably 
that the authentication mechanism allows for single sign-on for the users across the widest 
range of applications. [R17][R18] 



 

 
 DRAFT 11 / 132
 

Issues regarding authentication and authorization emerge throughout this document in 
different levels of detail. For example in the use of POSIX-style access control lists in Section 
0. Given that security components have not been considered explicitly, interactions may 
change due to security requirements. 
The first version of the prototype will not be able to achieve most of the basic authentication 
and authorization requirements. Thus it should be realized that adding authentication and 
authorization might modify components of the API, especially in the initial connect stages. 
The initial prototype will thus start from an "opaque VO" model, where users all are VO 
members, and VO members are all identified by a single common identifier (the AliEn 
security model). In as far as possible the prototype will allow for the basic requirements to be 
added later. It is recognized that a model that allows fine-grained authorization and 
implementation of the authentication and authorization requirements must replace this model. 

3.1 API AND GRID ACESS SERVICE 
An ARDA API, shown in Figure 2, would be a library of functions used for building client 
applications like graphical Grid analysis environments, e.g. GANGA or Grid Web portals. 
The same library can be used by Grid enabled application frameworks to access the 
functionality of the Grid services discussed in this document. The API is used also to access 
files available on the Grid as well as to put user’s files onto the Grid.  By files available on the 
Grid we understand those stored on one or more Storage Elements and registered in the File 
Catalogue or replica location service.  

API
(from User Application)

+ Authentication
+ Data Management

+ Grid Service Management
+ Job Control

+ Metadata Management
+ NewInterface

+ Posix I/O

SOAP
(from  API)

Grid File 
Access

(from  API)

Us er 
Application

POOL/ROOT/...
(from User Application)

API (OGSI User Interface Factory)

SE (POSIX  I/O s ervice)

 

Figure 2: Grid API for user and Grid interactions 

 
The Grid Access Service (GAS) is an example Service Component, and represents the user 
entry point to a set of core services. When a user starts a Grid session, he establishes a 
connection with an instance of the GAS created by the GAS Factory for the purpose of this 
session.  The sequence of interactions is illustrated in Figure 3.  During the lifetime of the 
GAS, the user is authenticated and his rights for various Grid operations are checked against 
the Authorization Service. Thus the GAS is a stateful service that keeps the user credentials 
and authorization information. Many of the User Interface API functions are simply delegated 
to the methods of the GAS. In turn many of the GAS functions are delegated to the 
appropriate service. 



 

 
 DRAFT 12 / 132
 

3.2  

 

Figure 3: The sequence of interactions betweens ARDA services while application initiates 
connection to the Grid  

3.2.1 Data Services API 
As a part of the ARDA API, the Metadata Catalog, SE, Data Transfer and File Catalogue AP 
library would expose functions used for building client applications including graphical or 
interactive Grid analysis environments.  
Via the Grid Access Service (GAS) the API is exposed directly or indirectly. 
Direct exposure is through client API bindings through java, C, C++ and scripting languages. 
Indirect exposure is through a unix shell-like interface or eventually through graphical user 
interfaces, making use of the underlying API.  
In the table below there is a list of proposed commands to be implemented in the grid shell 
[need to specify detailed semantics and error codes]. 
 

Command Description 
ls List the contents of a directory, including metadata of files 

(through extra options). There should be additional arguments to 
give the offset and the number of files to return (for scrolling 
purposes). Should be usable for all kinds of directories (virtual, 
logical) as well as replicas. 

mkdir Create a new directory 
rmdir Remove an (empty) directory 
getfacl List the ACLs applying to a file or directory 
setfacl Set the ACLs of a file or directory 
whereis Find the location of a file 
tree Print directory tree starting from a given directory. Again give 

offset and number of entries to return. 
cp Copy files 
mv Rename files 



 

 
 DRAFT 13 / 132
 

rm Delete files and replicas 
cd Change directory 
Pwd Print current working directory 
Touch Create an empty LFN 
complete complete the given path (useful for shell completion) 
Locate Find a file in the catalog 

 

3.2.2 Initial Components used for Prototype 
The access services needs further discussion and will therefore in the first incarnation of the 
prototype be based on the AliEn shell and a set of APIs.  

3.3 AUTHENTICATION 
Authentication is concerned with identifying entities (users and services) and tying identifiers 
for these entities to electronic credentials that can be used in establishing secure connections 
between actors. In the first order approach, an identifier may be the users real name, of the 
host name of the machine running a service, or an e-mail address. This identifier is bound 
securely to a piece of data that makes the claim to the identifier non-reputable: the public part 
of an asymmetric key pair together with the identifier digitally signed by a trusted third party 
(a “certificate” signed by a “CA”), or a simple password to be memorized by the user, or even 
a hash of the identifier encrypted with a piece of biometric data.  
For simplicity, we will assume in the description of the first prototype authentication based on 
certificates, but we keep in mind that alternative authentication methods must be supportable 
in the same scheme. Also, we will assume that the identifier in the credential represents the 
user identity (foregoing at this time privacy-preserving infrastructures).  
 
The usage pattern for credentials by users and services is slightly different. Services will keep 
credentials in an un-encrypted form that can be stored locally. Those services that are created 
on-demand (or on behalf of a user of process on a remote system) should use delegated 
credentials from either the originating system or responsible user. 
On the other hand, users are mobile and their credentials are not only more exposed but also 
much more “powerful” and attractive to exploitation. Thus, their credentials must be stored 
securely and be protected by a passphrase.  
In either case, the credentials must be issued by a trusted party close to the user (a 
certification authority, or the user home organisation) and valuable credentials held in a 
secure storage under the user’s control.  
 
The user will likely have different ways of obtaining credentials, and may have more than one 
credential at the same time. Thus, a “credential wallet” function should be provided – the 
infrastructure for this could leverage the MyProxy work [http://grid.ncsa.uiuc.edu/myproxy/] 
to hold these. In the future, this feature will enable single sign-on for many different 
applications, including roaming access to wireless networks, etc. 
The MyProxy service provides an API to manage credentials in the credential store. For 
details of this API the reader is referred to: 
  http://www-unix.globus.org/cog/distribution/1.1/api/org/globus/myproxy/MyProxy.html 
 



 

 
 DRAFT 14 / 132
 

3.3.1 Privacy preservation 
The scenario above will in all cases expose the user’s true identity (as testified to by the CA) 
to all actors. This model is inappropriate for many applications where for example medical or 
financial data are involved. But end-user tracability musty be preserved to satisfy site 
auditability and incident handling requirements. A straightforward extension of the trusted-
third-party model would be in introduce trusted providers of temporary one-time but tracable 
identity certificates in a format similar to the identifiable credentials. Such “nym” providers 
should be trusted parties in themselves – operating similarly to the AmEx “one-time credit 
card number” scheme. They are a special instance of the Identity Providers in the WS-
Federation model drafts. 

3.3.2 Initial Components used for Prototype 
• myproxy 

 

3.4 AUTHORISATION SERVICE 
Authorisation is concerned with allowing or denying access to services to entities based on 
policies. There are three basic authorisation models [RFC2904], classified as “agent”, “push” 
and “pull”. In the Agent model, an authorisation service issues tokens that can be user-held. 
The user collects the tokens and presents these later to the resource where access is requested. 
This model is used, e.g., in the VOMS service.  
In the Push model the user only interacts with the AuthZ server, and the authZ server 
forwards service-specific parts of the request to the underlying application service modules 
(ASMs). Network bandwidth or connectivity provisioning is best done in this mode, since 
access to the network in the end must be transparent and authZ tokens are hard to negotiate 
in-band. It is less suited for access to computing elements or storage, since it interface to 
legacy systems requires pre-configuration of all possible grid users (e.g. in a grid-mapfile). 
Lastly, the Pull model expects the resources to be sufficiently clever to contact the relevant 
AuthZ server and make the necessary decisions. Cellular phone roaming, and various 
RADIUS-based network access services use this model. 
 
Authorisation is not linked directly to authentication, although identity can of course be used 
as a basis for authorisation decisions. But in many cases, such decisions can be made without 
revealing identity (for example when cash payment is involved). And in some cases privacy 
preservation precludes the use of true identities in authorisation.  
The authorisation decisions must be hidden form the user as much as possible (providing 
single sign-on) and restricted delegation of authorisation should be supported to limit 
inadvertent damage. The user must be able to hold more than one set of attributes with each 
identity, and use a combined set of attributes in any authorisation negotiation. 
 
To date, the application of agent-based authZ models seems the most straight-forward way to 
implement group/role based access to distributed resources. The VO Membership Service 
(VOMS) [http://hep-project-grid-scg.web.cern.ch/hep-project-grid-scg/voms.html] is an 
attributes issuing service that allows high-level group and capability management and 
extraction of attributed based on the user’s identity. Multiple VOMS attributed can be 
embedded in the same user proxy credential thus allowing for multiple VO memberships to 
be asserted in a single call. The VOMS API is documented in http://edg-
wp2.web.cern.ch/edg-wp2/security/voms/apidoc/ VOMS has both an administrative interface 
for managing VOs as well as a request, extraction and an audit interface. 
 



 

 
 DRAFT 15 / 132
 

Once the user has degelated the relevant tokens to the service, it is up to the service to retain 
and propagate this information along to other services as needed. As long as the credential 
and authorisation information is retained – for example in a GSS Credential type [RFC2743]. 
A GSS credential contains all the necessary cryptographic information to enable the creation 
of a context on behalf of the entity that it represents. It may contain multiple, distinct, 
mechanism specific credential elements, each containing information for a specific security 
mechanism, but all referring to the same entity. A credential may be used to perform context 
initiation, acceptance, or both [JAVA 1.5.0 documentation for GSSCredential, 
http://java.sun.com/j2se/1.5.0/docs/api/org/ietf/jgss/GSSCredential.html]. 
 
Although services co-located in the same service container or in the same administrative 
domain could communicate without using the user’s credential, it is understood that sufficient 
information must be transferred or delegated along to new services to be able to establish new 
secure connections. Thus, a GSS Credential representing the user’s (assumed) identity, and 
authorisation attributes must be passed on service invocations. 
 
 

3.4.1 An authentication and authorisation use model 
 
A high-level view of the control flow in the Access service creation is presented in the figure 
below. The identity provider (CA) is a trusted third party external to the VO, and also the 
credential wallet (MyProxy service) should be hosted by a user-trusted entity (like the user’s 
home organisation or UHO). 
 
 
 
 
 
 

1. The user hold either a long-lived certificate, or is able to obtain a proxy from a Site-
Integrated Proxy Service (SIPS). This step concludes the authentication proper. 

VOMS
MyProxy

protect with
username+pw

CA: Identity
provider

CA: Identity
provider

GAS factory

G
A

S 
(A

PI
)

instantiate with proxy or 
(username+pw+MyProxy-servername)

return session key
if no proxy was used

user 

us
er

 o
r p

ro
gr

am
m

e
on

 b
eh

al
f o

f t
he

 u
se

r

…

communicate using proxy or session key

obtain credential + VO,group,role
if needed based on username/pw/host

CE (user)

User’s
Job

GSSCredential

any service running on behalf 
of the user has all relevant AAA 
information to make access decisions 
– the service holds the (delegated) 
GSS Credential of the user OTHER DOMAIN

USER’S DOMAIN OR UHO



 

 
 DRAFT 16 / 132
 

2. Based on this credential, the user accesses a VO membership service (VOMS) and 
obtains one or more attribute certificates with embedded group and role information.  
The VOMS service inspects the user’s identity and based on this authentication 
information signs a membership attribute bound to that identity. 
These attributes are bound to the user identity. The enhanced user proxy should 
contain at least one VO attribute. 

3. The VO-enhanced proxy is stored in an on-line credential service (MyProxy) and 
protected with a username/password combination. The username/password may be a 
one-time combination. The MyProxy service will release the credential to any client 
that provides the username/password combination (or the original user proxy). 
 
The VO will administer the VOMS database and add the relevant group and role information 
to this database. Two other points are worth noting: 

- the user can add any number of VO attributes (roles, group, even from different VOs) 
to a single credential chain. This allows the user to make a tradeoff between wide 
single sign-on and privacy protection (reveal only what’s needed) 

- The user can store an infinite amount of different credential chains inside the 
MyProxy server, protected with different username/password combinations. The user 
can even use different MyProxy servers for the same VO, by having the hostname of 
the MyProxy server explicit in the GAS factory API. 

- The password passed to the MyProxy server is (or at least can be) a worthless one-
time password protecting only one specific set of credentials and assertions. 

 
4. The end-user (or a programme on his behalf) contacts the access service factory to 

instantiate a new access service. The user may authenticate using the enhanced proxy, 
or can now provide the username/password combination and the MyProxy service 
name. The group and role mapping contained in the VOMS attributes determine the 
roles and capabilities on the Access Service. 

 
 
5. In case the username/password combination is used to access the GAS Factory, it 

could decide on any authentication mechanism to secure the connection between the 
user (-programme) and the GAS. It can be the symmetric session key used in the TLS 
communications, or a magic cookie, for instance.  
In case the user proxy is used no additional token needs to be exchanged for secure 
communications. 

U se r c re de ntia l cha in M yProxy se rverkC A  or ce rt s to re

g rid-p ro xy-in it

p roxy  id en tity

V O M S

ge t a ttr ibu tes

attrib u te (s )

U se r

1..n

S tore  p ro xy  ide ntity  an d a ttr ibu tes  a nd  pro tec t w ith  u serna m e /pa ssw ord

A t A p p lica tio n

M e ssag e1

A P I

C on ne ct

cha lle n ge -re po n se m a y ha pp en

d o u sefu l th in gs  w ith  IS

g et c re de n tia l ch a in  +  asse rtio ns  ("m yprop xy://u serna m e @ proxy.server/c red id " +  pa ssw o rd)

cre d en tia l ch a in  an d  ro le  in fo rm atio n a s  req ue sted  by  use r o r V O  V O M S se rve r

G A S  fa c tory

M e ssag e2

cre a te  G A S  ins ta nce

M essa ge 3



 

 
 DRAFT 17 / 132
 

6. To communicate with the GAS API after the initial connection, either the magic 
cookie or the proxy is used. In a first prototype using the proxy itself is the most 
straightforward implementation. 

 
The user program is now running and will access grid services continuously. Some of 
these interactions will be with service ‘clusters’ that are running as a collection in a 
single domain. In other cases, the interaction be involve starting remote processes, 
running jobs, or delegating capabilities to other entities. 

 
7. The AS will contact other services on behalf of the user program. In such 

communications, the user credentials could be provided to the service if that service 
is running outside the domain. If a trusted domain can be defined amongst a set of 
services, the communications between them could of course use any other mechanism 
to convey the user’s capabilities and roles 

 

3.4.2 Enforcement 
 
On the service end the validity of the user credentials and the attributed contained therein 
must be validated at least once per administrative domain. To this end, both the authentication 
information must be checked (using the GSS-API, taking into account the newly proposed 
PKIX extensions for proxy certificates as defined in GSI), as well as the authorisation 
information.  
 
The basic validation of the authentication data is supported either by the Globus gss_assist 
library or by the GACL slash-grid proxy library at http://www.gridpp.ac.uk/gridsite/slashgrid/ 
for C and C++ implementations. For Java, the Java COG [http://www.globus.org/cog/java/] 
or alternatively the EDG Java Security packages are available. 
Their API are described in the references quoted above. 
 
The implementation of the policy enforcement points for authorisation is also available for 
both the native and java-hosted systems, although the usefulness of the policy enforcement in 
the end highly depends on the use made of the authorisation information inside the service.  
 
For native implementations, VOMS attributed can be parsed and enforced by LCAS 
[http://www.dutchgrid.nl/DataGrid/wp4/lcas/edg-lcas-1.1/] for high-level decisions and 
access control lists, and by LCMAPS for running executables natively with per-user unix 
credentials [http://www.dutchgrid.nl/DataGrid/wp4/lcmaps/edg-lcmaps_gcc3_2_2-0.0.23/]. 
The latter requires the use of a ‘sudo’ like mechanism that is currently only implemented 
using the edg-gatekeeper (see http://www.dutchgrid.nl/DataGrid/wp4/lcas/edg-lcas-
1.1/node3.html). 
 
For Java, the EDG Java Authorisation system is available with similar role-mapping 
functionality for hosted environments. The details and API are given in http://edg-
wp2.web.cern.ch/edg-wp2/security/edg-java-security.html 
 



 

 
 DRAFT 18 / 132
 

3.4.3 Initial Components used for Prototype 
• VOMS 

 

3.5 INFORMATION AND MONITORING SERVICES 
 

The information services are a vital component of any grid; most services will publish or 
consume information. Some services may add behaviour to the information services but more 
commonly they will merely use them. These services may choose to hide the underlying 
information service, but this has the great disadvantage that it is then hard to combine 
information from the different services. It is best to start with a single well defined interface 
to the information system and only specialise when it proves necessary. It may be useful to 
provide simpler APIs for some purposes. 

Any information can be monitored provided it carries a timestamp. The mechanisms to move 
the information around are the same. What makes monitoring systems distinctive is normally 
the GUIs that are provided to visualise time-sequenced data and to highlight problems. These 
GUIs are simply clients of the information services. 

Some information of interest changes rapidly and some much more slowly. However, even 
with the slowly changing information, it is often necessary to know quickly if it does change. 
Publishing information that is only changing infrequently, along with rapidly changing 
information is inefficient. This requires thought when designing schemas. It is better to treat 
the information as two or more entities with one to one relationships between them at any one 
time, rather than trying to bundle together slowly and rapidly changing quantities. 

We can consider some of the areas where information services appear: 

1. There is the “MDS-like” information service used to publish information about 
available services.  

2. The Job Provenance Service, which keeps track of the execution conditions for all the 
Grid jobs, could be implemented on top of the information service. 

3. An Auditing Service provides the mechanism for all services to report their status and 
error conditions. This allows Grid manager to monitor all exceptions in the system 
and to take corrective action. This is simply publishing information using the 
information service. 

4. An Accounting Service could be defined to accumulate information about the use of 
the Grid resources by the users and groups of users. Again this does not appear to 
require additional functionality beyond that expected of an information service; 
however, it requires fine-grained access control and trusted transmission channels.  

5. The Package Manager service gives information on the package names, versions and 
their locations in data repositories, usually Storage Elements. This is once more just 
publishing information – though perhaps a package manager might also actually 
manage the packages as the name indicates. 

6. Application monitoring and bookkeeping. Applications being executed as part of 
large production runs can publish their status allowing production coordinators to 
keep things under control. 

R-GMA provides a Producer and Consumer model for information publishing and retrieval, 
in accordance with the GMA architecture. R-GMA uses a hidden registry to manage 
subscribed Producers and Consumers. An additional component referred to as the mediator 



 

 
 DRAFT 19 / 132
 

uses the registry to broker Producer and Consumer lookups using the powerful SQL query 
language.  
The Services currently available within R-GMA are:  

• Factory services 
o ProducerFactory service 
o ConsumerFactory service 

• Producer services 
o PrimaryProducer service 
o SecondaryProducer service 
o OnDemandProducer service 

• Consumer service 

3.5.1 Producer services 
The Producer services are used to publish information into R-GMA. A Producer is created by 
passing properties to a ProducerFactory service, which creates a Producer and returns a 
reference so you can interact with it. Currently there are three main types of Producer: 

• Primary 
• Secondary 
• On-demand 

 
These all behave in different ways, as described in the following sections, but have two 
common features: 

3.5.1.1 Declaring tables 
A Producer advertises the type of information that it will make available by declaring a table. 
The user can also specify a predicate (SQL WHERE clause) that defines the precise subset of 
the table that will be published. If the table has not already been defined, the user must 
provide a CREATE TABLE statement to describe the columns in the table. 

3.5.1.2 ProducerType attribute 
The ProducerType attribute specifies the type of data that the Producer will make available. 
Producers with the History property retain all published data (possibly subject to a minimum 
retention period). 
Producers with the Latest property only hold the most recent tuple for each value of a table’s 
primary key.  When the user inserts a tuple, one of two things will happen: 

1. The tuple will be stored if it is newer than any tuple with the same primary key value 
in storage or if no such tuple exists. 

2. The tuple will be ignored if a tuple with a newer timestamp already exists with the 
same primary key value. 

This enables the Producer to maintain the current status of a monitored component rather than 
a complete history of events. 

3.5.1.3 Primary Producers 
Primary Producers are the initial source of the data. They retain data for at least the duration 
of the minimum retention period, which can be set for each table. Tuples older than the 



 

 
 DRAFT 20 / 132
 

minimum retention period are discarded if no Consumers are actively using the Producer. 
Primary Producers extend the standard Producer in two ways: 

3.5.1.3.1 Inserting data 
The user introduces new data into R-GMA by inserting it into a Primary Producer. 

3.5.1.3.2 Persistency (or storage location) 
Non-persistent Producers are created by specifying a Memory storage location and are 
implemented using an in-memory buffer maintained by the Producer service. Tuples are 
stored within this buffer and dispersed to all listening Consumers. If the system should crash, 
the data will be lost unless a Consumer has already picked it up. There is a memory-imposed 
limit on how much data can be stored. 
Persistent Producers use an RDBMS to store published data and are created by specifying a 
Database storage location. In this case the Producer can be restarted after crashing and the 
limit on data storage depends only on how much data the RDBMS can cope with. The user 
can specify the RDBMS to be used. 

3.5.1.4 Secondary Producers 
A Secondary Producer is used to aggregate streams of data and/or make them persistent. They 
do this by setting up a Consumer to retrieve data for each declared table and republishing this 
through a Primary Producer. Secondary Producers are created by specifying the producer type 
and persistency attributes of the Primary Producer that will be used to republish the data. 
As the user cannot directly publish new data using a Secondary Producer, it has no insert 
operation. 
The Secondary Producers has several uses within R-GMA: 

1. It collects and maintains information in one place. This avoids the querying Producers 
individually or accessing remote information sources. 

2. It can be set up to record historical data and thereby act as an archiver of information. 
3. It offers an alternative to the mediator for joins over tables held in different places. 

3.5.1.5 On Demand Producers 
An On Demand Producer interacts with a user-supplied plug-in that returns data in response 
to an SQL query. It is used when the cost of creating messages is high. In this case, efficiency 
can be greatly improved by retrieving data only when it is requested by a Consumer, rather 
than retrieving it periodically and publishing it into R-GMA. 

3.5.2 Consumer Service 
The Consumer Service is used to obtain data published by one of the Producer services. A 
Consumer handles a single query, expressed as an SQL SELECT statement. The Consumer 
also identifies how the query is executed – referred to as the query type. Depending upon the 
query type, the Consumer will run its query in one of two ways. The first is called a 
Continuous query and the second is referred to as a One-Time query.  
Continuous queries stream data from Producers. When a new tuple is published, the tuple is 
copied to all interested Consumers. This approach allows a Consumer to keep up-to-date with 
all Producer events. Conversely, one-time queries involve a single request/response for the 
Consumer to get information from a Producer. This allows the Consumer to retrieve a 
historical or latest view of information from a Producer. 
An overview of query types is shown in table 1: 
 



 

 
 DRAFT 21 / 132
 

Query type  Query 
mode 

Description Producers that 
answer the query 

CONTINUOUS Continuous Consumer initiates continuous 
request. Tuples are then 
broadcast to each listening 
Consumer once published. 

All 

CONTINUOUS+TIME 
INTERVAL 

Continuous Consumer initiates continuous 
request. Producer will stream 
data that was published within 
the specified time interval. 

All 

HISTORY One Time Consumer issues a query. 
Producer responds by executing 
the query and returning the 
results. 

Producers of 
ProducerType 
HISTORY 

LATEST One Time Consumer issues a query. 
Producer responds by executing 
the query and returning the 
results. 

Producers of 
ProducerType 
LATEST 

Table 1.  Query Types. 

When using either a continuous or one-time query approach, retrieved tuples are stored within 
a Consumer buffer, managed by the Consumer service. The Consumer can extract buffered 
data by invoking the various pop operations available in the Consumer API.  

3.5.2.1 Global and local queries 
R-GMA makes the distinction between global and local queries.  A global query is a query 
that is posed against the (virtual) global schema.  A local query is a query posed against the 
(real) local schema of one or more Producers. 
The task of a mediator involves translating global queries into a set of local queries, and users 
normally choose to take advantage of this. However, R-GMA also allows users to send local 
queries to individual Producers directly. To pose a local query, the user passes a list of 
Producers to a Consumer.  This query is forwarded on to each Producer in the list and the 
results are merged. 
As most Producers are supported by databases, expressive local one-time queries can be 
posed.  However, local queries that involve distributed query processing, for example joining 
a relation of one Producer with a relation of another, are not supported. 

3.5.3 Resources 
What we refer to as a Producer or a Consumer really consists of two parts: an API instance on 
the user’s machine, which allows the user to interact with the Producer/Consumer, and a 
Resource on the server, which contains the functionality. A Resource is created when the user 
creates a new API instance using a Factory and can be explicitly destroyed by the user or 
allowed to “time out” using a system of soft-state registration. Each resource has a 
termination interval associated with it, which is the length of time a user can be inactive 
before the resource is destroyed. 

3.5.4 Security 
The basic authentication mechanism will protect the system from those without an approved 
certificate. Protection from malicious certificate owners, depends upon internal mechanisms 
within R-GMA (e.g. mutual authentication between the internal components), this has already 



 

 
 DRAFT 22 / 132
 

been implemented. The section below describes part of the authorization scheme that will be 
implemented – though not in the first version of the ARDA prototype.  

3.5.4.1 Authorization 
Authorization rules, which are local to a VO, will define what actions an individual 
(certificate holder) may carry out. This includes the ability to publish information (via a 
Producer), to query (via a Consumer) or to discover what Producers exist. 

The authorization rules are specified when a table description is first defined in the schema. 
Once it has been defined, neither the table description nor the authorization rules may be 
modified, so if either is wrong, the table must be dropped and recreated. The authorization 
rules are defined in a TableAuthorization object that is passed into the createTable method. 
This holds a set of rules of the form: 

View : AllowedCredentials; 

Each View defines a view on a table in the form of a SELECT statement. If you match the 
allowed credentials you will have read access to the data defined in that view. It is possible 
that your credentials match two rules in which case you will be able to see the union of the 
two views. If you issue a query to see data you are not allowed to see, you will just receive an 
empty set. 

Both the View and the AllowedCredentials are parameterised. The keywords DN, VO, 
GROUP, ROLE and CAPABILITY may be replaced by their actual values. This is indicated 
by enclosing them in []. 

If the TableAuthorization object contains no rules, everyone has read access. 

Consider a table created as:  
CREATE Table Job (Jobid VARCHAR(200), State VARCHAR(30), 
Owner VARCHAR(200),  OwnersGroup VARCHAR(20), Usage 
VARCHAR(50), JobDesc VARCHAR(200)) 

To impose the constraints that a row of the table is available to the owner of the job, i.e. if the 
DN matches. 

This would be achieved with the following rule: 
SELECT * from Job where Owner=[DN] : DN=[DN]; 

To allow the VO admin role to see all but the JobDesc field: 
SELECT JobID, State, Owner, OwnersGroup, Usage from Job : 
ROLE=’Voadmin’; 

To allow all members of the ABModel group to have access to information, including the 
JobDesc, but excluding the usage information we get the statement 

SELECT JobID, State, Owner, JobDesc FROM Job WHERE 
OwnersGroup=’ABModel’ : GROUP=’ABModel’ 

3.5.5 Example code 

3.5.5.1 Basic Primary Producer 
The code below shows you how to create a basic Primary Producer and use it to publish data. 
 

try { 
 

// Create an instance of the producer factory 
ProducerFactory producerFactory =  
    new ProducerWebServiceFactoryImpl(); 
 



 

 
 DRAFT 23 / 132
 

// Create a LATEST DATABASE primary producer  
// The list of VO names is omitted, so the producer will publish 
// to all VO’s it is a member of. 
PrimaryProducer primaryProducer =  
    producerFactory.createPrimaryProducer( 
        StorageLocation.DATABASE, ProducerType.LATEST, null); 
 
// Declare table JobDetails with no predicate (the table must  
// already have been created) 
primaryProducer.declareTable("JobDetails", new Predicate(“”)); 
 
// Insert data into the producer 
primaryProducer.insert(new InsertStatement( 
    "INSERT INTO JobDetails VALUES 
(‘jid293’,’myJob’,’Running’,’myDN’)")); 
 
// Close the producer 
primaryProducer.close(); 
 

} catch (RemoteException e) { 
// The PrimaryProducer or ProducerFactory service could not be 
contacted 

} catch (UnknownResourceException e) { 
// The PrimaryProducer resource could not be found 

} catch (RGMAException e) { 
// An application error occurred (e.g. incorrect SQL syntax) 

} 

3.5.5.2 Advanced Primary Producer 
The code below shows you how to create and use a Primary Producer with the following 
features: 

• a predicate 
• a CREATE TABLE statement 
• authorization 
• a minimum retention period for the data of 5 minutes 
• a termination interval for the Producer of 1 hour 
• a run-time decision on which R-GMA implementation to use (just set the variable 

producerFactoryImplClassName to the required implementation class). 
 

try { 
// Create an instance of the producer factory, using implementation  
// class producerFactoryImplClassName 
ProducerFactory producerFactory = 
    (ProducerFactory) 
Class.forName(producerFactoryImplClassName).newInstance(); 
 
StringList voNames = new StringList(); 
voNames.addString(“alice”); 
voNames.addString(“atlas”); 
 
// Create a HISTORY MEMORY primary producer, publishing to 
// VO’S alice and atlas. 
PrimaryProducer primaryProducer =  
    producerFactory.createPrimaryProducer( 
        StorageLocation.MEMORY, ProducerType.HISTORY, voNames); 
 
// Change the termination interval to 1 hour (from the default 20 
minutes) 
primaryProducer.setTerminationInterval( 
    new TimeInterval(1, Units.HOURS)); 
 
// Create authorization rules for VO’s alice and atlas 
TableAuthorization tableAuthz = new TableAuthorization(); 
tableAuthz.addRule( 
  "SELECT jobStatus, jobName FROM JobDetails WHERE owner=[DN]:” + 
  "ROLE=’admin’"); 
 
// Create the table 
primaryProducer.createTable( 
    new CreateTableStatement("CREATE TABLE JobDetails (" +  
              "jobId VARCHAR(20), jobName VARCHAR(40), " +  
              "jobStatus VARCHAR(300), owner VARCHAR(200))"),  
    tableAuthz) 



 

 
 DRAFT 24 / 132
 

 
// Declare table JobDetails 
primaryProducer.declareTable("JobDetails",  
    new Predicate("WHERE site='RAL'"), 
    new TimeInterval(5, Units.MINUTES)); 
 
// Insert data into the producer 
primaryProducer.insert(new InsertStatement( 
    "INSERT INTO JobDetails VALUES 
(‘jid293’,’myJob’,’Running’,’myDN’)")); 
 
// Destroy the producer: close it immediately, throw away all data 
primaryProducer.destroy(); 
 

} catch (RemoteException e) { 
// The PrimaryProducer or ProducerFactory service could not be 
contacted 

} catch (UnknownResourceException e) { 
// The PrimaryProducer resource could not be found 

} catch (RGMAException e) { 
// An application error occurred (e.g. incorrect SQL syntax) 

} 

 

3.5.5.3 Basic continuous consumer 
The code below shows you how to create a Consumer and use it to retrieve data from 
Producers. 
 

try { 
// Create an instance of the consumer factory 
ConsumerFactory consumerFactory = 
    new ConsumerWebServiceFactoryImpl(); 
 
// Create a Consumer with a LATEST query 
// The list of VO names is omitted, so the consumer will consumer 
// from all VO’s it is a member of. 
Consumer consumer = consumerFactory.createConsumer( 
    new SelectStatement("SELECT jobName, jobStatus FROM JobDetails"), 
    QueryType.LATEST, null); 
 
// Start the query with a timeout of 2 minutes 
consumer.start(new TimeInterval(2, Units.MINUTES)); 
 
// Wait for the query to finish executing 
while (consumer.isExecuting()) { 
    Thread.sleep(2000); 
} 
 
// Retrieve data from the Consumer 
ResultSet result = consumer.pop(); 
 
// For each row of results... 
while (result.next()) { 
    // Get the job name (using the column number, 1) 
    String jobName = result.getString(1); 
    // Get the job status (using the column name) 
    String jobStatus = result.getString(“jobStatus”); 
    System.out.println("Name: " + jobName + ", status: " + 
        jobStatus); 
} 
 
// Close the consumer 
consumer.close(); 
 

} catch (RemoteException e) { 
// The Consumer or ConsumerFactory service could not be contacted 

} catch (UnknownResourceException e) { 
// The Consumer resource could not be found 

} catch (RGMAException e) { 
// An application error occurred (e.g. incorrect SQL syntax) 

} 

3.5.5.4 Secondary producer 
The code below shows you how to create a Secondary Producer to republish data to persistent 
(DATABASE) storage. 
 



 

 
 DRAFT 25 / 132
 

try { 
 

// Create an instance of the producer factory 
ProducerFactory producerFactory =  
    new ProducerWebServiceFactoryImpl(); 
 
// Create a secondary producer 
SecondaryProducer secondaryProducer = 
    producerFactory.createSecondaryProducer( 
        StorageLocation.DATABASE, ProducerType.LATEST, null); 
 
// Declare table JobDetails with no predicate.  
secondaryProducer.declareTable("JobDetails", new Predicate(“”)); 
 
// Send a “sign of life” to keep the producer alive every 10 minutes, 
// otherwise the SecondaryProducer will close itself after the 20  
// minute default termination interval has expired. 
while (!exit) { 
    secondaryProducer.showSignOfLife(); 
    Thread.sleep(10 * 60 * 1000); 
} 
 
// Close the producer 
secondaryProducer.close(); 
 

} catch (RemoteException e) { 
// The SecondaryProducer or ProducerFactory service could not be 
contacted 

} catch (UnknownResourceException e) { 
// The SecondaryProducer resource could not be found 

} catch (RGMAException e) { 
// An application error occurred (e.g. incorrect SQL syntax) 

} 

 

3.5.6 Initial Components used for Prototype 
• R-GMA 

 

3.6 JOB MONITORING 
Job Monitoring is a service that wraps up the running job and provides information about job 
status and progress. Upon request, it presents this information to other services and provides 
access to the job specification (JDL, etc) as well as to temporary and final files produced by 
the job (stdout, stderr, log files, other outputs). The Job Monitoring Service communicates 
with clients outside the Grid site via a Site Gatekeeper running on the gatekeeper node.. The 
Gatekeeper Service is either a part of the distributed Workload Management Service or an 
independent service. 
To be added at a later phase of the project.  
 

3.7 JOB PROVENANCE 
The Job Provenance Service is a specialized database to keep track of the execution 
conditions for all the Grid jobs. This information is used to reproduce the execution 
environment for the verification and debugging purposes and possibly for rerunning certain 
jobs. The Job Provenance Service does not contain the information used in the data queries. 
To be added at a later phase of the project.  

3.8 AUDITING SERVICE 
An Auditing Service provides the mechanism for all services to report their status and error 
conditions. This allows Grid manager to monitor all exceptions in the system and to take 
corrective action. 
To be added at a later phase of the project.  



 

 
 DRAFT 26 / 132
 

 

3.9 ACCOUNTING SERVICE 
The Accounting Service accumulates information about the use of the Grid resources by the 
users and groups of users. This information serves to prepare Grid usage statistics reports. It is 
used also in the enhanced workload management with quotas and other policies taken into 
account. 
To be added at a later phase of the project.  
 

3.10 SITE PROXY (WAS SITE GATEKEEPER) 
The site gatekeeper is a proxy service that routes messages to/from the worker nodes of a site. 
It is essential to allow worker nodes that don’t have outbound connectivity to communicate 
with other Grid services. The site gatekeeper may also optimize the requests by e.g. message 
grouping or suppression of redundant requests.  
To be added at a later phase of the project (albeit with high priority) 
 

3.11 COMPUTING ELEMENTS 
Computing Element (CE) is a service representing a computing resource. Its interface should 
allow execution of a job on the underlying computing facility, access to the job status 
information as well as well as job control (removal). The interface should also provide access 
to the dynamic status of the computing resource like its available capacity, load and number 
of waiting and running jobs. The status information should be available on per VO basis or 
each VO allowed to the site has its own instance of the service.  

 
Figure 4: The sequence of interactions betweens ARDA services illustrating possible job 

execution model 



 

 
 DRAFT 27 / 132
 

 
 
The computing element is a layered service, which will be able to submit jobs to various 
batch systems (LSF, PBS, Condor) but also to Grid systems like GT2, GT3, and Unicore. 
This diversity will be achieved by exploiting CondorG with appropriate backends as queuing 
system on the CE. This additional queue on the CE offers also the possibility of using the CE 
in a pull (e.g. the Alien CE pull component may feed this queue) or push (e.g. the EDG 
resource broker may feed this queue) mode. In order to support security, an appropriate call-
out module that changes the job ownership when it is submitted to the local batch system 
needs to be integrated. An existing component providing this functionality would be for 
instance the EDG LCAS and LCMAPS modules.  
 
Figure 5 gives a high level overview of the envisaged CE design.  
In the first incarnation of the prototype, the pull model via the AlienCE will be pursued.  
While CondorG will be interfaced to LSF, the direct submission from the AlienCE to LSF 
will remain enabled.  
 
 
 
 
 

Globus gatekeeper

Local batch queue GT2, GT3, Unicore

CE

CondorG

AliEnCE

EDG Broker Task Queue

Change UID

Globus gatekeeper

Local batch queue GT2, GT3, UnicoreLocal batch queue GT2, GT3, Unicore

CE

CondorG

AliEnCE

EDG Broker Task Queue

Change UID

 
 

Figure 5: High level schematic overview of CE components and their interaction with 
workload management modules  

 



 

 
 DRAFT 28 / 132
 

3.11.1 Initial Components used for Prototype 
• Alien CE 
• EDG/Globus Gatekeeper 
• CondorG 
• Change-UID (LCAS, LCMAPS) 

3.12 WORKLOAD MANAGEMENT 
The Workload Management Service (WMS) receives the workload instructions from the users 
in the form of jobs. It is responsible for assigning jobs to an appropriate Computing Elements 
(CE) where the job can be run. This can be done via a push model where the job is pushed to 
an CE or a pull model where the CE is asking for jobs. Initially, the pull model will be 
provided. If no CE is able to run the job, some preparatory actions can be undertaken, e.g. 
bringing some of the input data to a near SE. The WMS can modify the job descriptions, e.g. 
generate subjobs in order to optimise the overall job execution. The WMS assigns an 
identifier to the accepted jobs that can be used later to interrogate the job status. The WMS 
provides accounting information upon the job execution to the Accounting Service and can be 
implemented as a compact or a distributed service, i.e. having internal distributed components 
 

3.12.1 Initial Components used for Prototype 
• AliEn task queue 

3.13 DATA SERVICES 
This section gives an overview of all data related services. The main services that relate to file 
access are the File Catalog, Data Scheduling and Storage Element. Metadata Catalogs are 
mostly also in this area, although this depends on how ‘metadata’ is defined. We will define it 
through the specification in great detail below. Also of relevance are the Authentication and 
Authorization as well as the Access Service components. And all services need to provide 
Auditing and Accounting so they are discussed here as well to a limited extent. The Package 
Manager might make use of the other service components to achieve its task. 
The granularity of the data is on the file level. The idea is to give the user the illusion of a 
global file system (which is specific to his VO). There may be a client application that can 
look like a shell (as in AliEn) which can seamlessly navigate in this virtual file system, listing 
files, changing directories, etc. To read and write files is possible through a posix-like I/O. In 
terms of access control, the suggestion is to adopt posix ACLs. They have well-defined 
semantics and are already implemented in several file systems today. The many different 
flavours of mass storage systems should be hidden behind the very same posix-like file I/O. 
However, the semantics of reads and write will be affected by having an MSS backend: there 
may be substantial latencies for reads and many more failure modes for write, so the number 
of errors and messages is larger than for a conventional file system. The components in the 
ARDA document covering these issues are the Storage Element (providing the MSS backend 
abstraction, virtual file system), File Catalog (providing the global logical file system view for 
the user), and of course the security components (Authentication, Authorization). 
In a distributed environment, there will be many replicas (managed copies) of the user’s files 
stored at different physical locations. The user does not necessarily needs to be aware of this 
fact, however the capabilities for controlling the replica placement need to be available. This 
is covered by the Data scheduling component which provides file placement capabilities. 
The way the files are found and selected is not necessarily by name but by attributes, and this 
is where the Metadata Catalog component comes into play. However, this can be very 



 

 
 DRAFT 29 / 132
 

application (and VO) specific, so the interface we specify in this document is a very simple 
one that can be implemented on top of existing application metadata services such that they 
can be used from within the grid environment. It is this mechanism that enables the concept of 
virtual datasets as well 

3.14 STORAGE ELEMENTS 
The Storage Element (SE) is responsible for saving/retrieving files to/from the local storage 
that can be a disk or a mass storage system. It manages disk space for files and maintains the 
cache for temporary files. In order to describe the proper service semantics, we need to 
introduce some concepts that will be applied.  

3.14.1 Concepts 
Storage Elements represent a resource that may have very different quality of service metrics 
between different instances (see Figure 6.  

 

Figure 6 Space occupied by our different storage concepts in the space of QoS and 
Portability. 

3.14.1.1 Opportunistic, ’tactical’ Storage 
At one extreme end we have Storage Elements that have a very simple purpose: store grid 
files close to a computing element as long as it’s needed (if possible). Such SEs can be 
viewed as file caches, temporary or even scratch space. Their value is in their flexibility. 
Since they do not provide high data safety, such SEs can be easily deployed, switched on or 
off according to the need of a given site or a given virtual organization.  
SEs are controlled by the sites and are subject to local policy. Having the concept of tactical 
SE allows a site to declare space in a local store in an opportunistic manner. It can provide 
storage that is currently unused by their local users and revoke it whenever necessary. This 
will make it attractive to sites to make resources available to grid users, knowing they can re-
claim the resources whenever they want. Grid users profit from such storage being able to run 
jobs requiring local store at more sites. Users are expected to keep only disposable data in 
such stores – meaning that it should not matter to anyone if the instance of the data is lost – 
because it can be re-generated or re-copied from a master instance for example. Important 
data, master copies should not be kept in such storage (only at the user’s own risk). If users 
generate new data at such stores, they should either register a master copy at a more long-term 
SE or be prepared to re-generate the data if necessary. 

       strategic 

 
 
tactical 

QoS 

Portability 



 

 
 DRAFT 30 / 132
 

The tactical SEs may be hot-deployable and be alive only for a short period of time. 

3.14.1.2 Fail-safe, ’strategic’ Storage 
Such storage comes with a high quality of service. Users may expect to be able to reliably 
retrieve their files from such storage at any later time. Such store usually has a managed MSS 
behind it and virtual organizations are expected to pay the price of such storage, like the HEP 
experiments are expected to pay for Castor storage at CERN. 
ARDA middleware will provide the tactical SE and will use external tactical or strategic SEs 
wherever possible and wherever the interface is provided. 

3.14.1.3 Near storage elements 
‘Near storage elements’ are operational storage elements sitting close to the computation. We 
might use this term for either tactical or strategic SEs. The coupling term ‘near’ refers to a 
computing element from which this SE is easily accessible. 

3.14.1.4 Far storage elements 
‘Far storage elements’ are the opposite of near, but wherever we use this term we think of a 
strategic, very reliable storage to store master copies or other important data.  

3.14.2 Interface Overview 
There are two interfaces into the SE. The first interface is the SRM interface. It is there to 
manage the storage space and we foresee to evolve that interface according to the proper 
SRM specifications, see http://sdm.lbl.gov/srm-wg/documents.html. We might extend this 
interface if we see the need, always keeping in sync with the SRM specification group and 
trying to work our changes that we feel necessary into the specification. 

 

Figure 7 The SE modular breakdown. The two interfaces that are exposed are SRM and 
a posix-like File I/O. These interfaces might make use of many third-party storage and 
protocol components. 

As displayed in Figure 7 the two interfaces are the SRM management interface and the File 
I/O interface that exposes a posix-like file interface detailed below.  

SRM interface ++ 

SRM Other 

rfio dcap chirp aio 

Castor dCache NeST Disk 

File 
I/O 

protocols 

External API 

Internal interfaces 

implementation 



 

 
 DRAFT 31 / 132
 

3.14.3 Storage Resource Management API 
The storage element management interface that we propose to adopt is that of the SRM. It is 
described in great detail in the documents available at http://sdm.lbl.gov/srm-
wg/documents.html. 
This management API is intended to be used mostly by administrators and as an internal API 
between Grid Services. 

3.14.4 Posix-like File I/O 
The interaction with the storage element should be transparent to the user through a virtual 
file system with posix-like semantics. Most probably we have to relax the posix API and 
implement only a subset, as it is done in I/O libraries today.  
It is possible to provide a grid virtual file system such that the system calls can be used for 
handling files. There are existing approaches to provide such a system, like AlienFS, GFAL, 
slashgrid, however none of them have been used and deployed in a large scale Grid yet, so an 
evaluation needs to be done first. There is also doubt about whether it is necessary to provide 
such a virtual file system at all.  
The API specification in the appendix provides the user with a file I/O interface with limited 
semantics. For the user it should not matter which technology is used by the underlying SE 
implementation (see Figure 7) as long as the functionality described below is achieved.  

3.14.5 Initial Components used for Prototype 
• SRM (Castor implementation) 

• GridFTP 

• GFAL and/or AIOD 

3.15 DATA SCHEDULING 
There is a symmetry between job and data scheduling. The jobs are being run at computing 
farms that are managed as a local resource by the participating sites. The data are also stored 
at storage nodes that are managed as a local resource by the very same participating sites. On 
top of the resource there are the services to distribute jobs and data. These services may be 
specific to a virtual organization.  
In the Grid, replicas are created to make data available to jobs at the many computing sites. 
These replications may either be scheduled by a user or may be initiated by the job scheduler. 
Either way, the data transfers need to be controlled through a data scheduling service in order 
to optimize the network usage and to avoid duplicate transfers. The most obvious scenario 
that needs to be avoided is the case where hundreds of jobs request the same file to be 
replicated to the local site, resulting in hundreds of simultaneous file transfers of the same 
file. In Figure 8 we outline the similarities between the job and data scheduling component 
stack.  



 

 
 DRAFT 32 / 132
 

 

Figure 8: Possible similarities between job and data scheduling. The left hand side is a 
simplified Grid Scheduling stack, with the emphasis on the site and VO context. A 
similar stack can be provided for the data management, where the Data Store is our 
Storage Element. Today there are existing components that can be evaluated in AliEn 
(File Transfer Daemon; for the Grid Transfer Feeder) and in Condor (Stork; for the 
Scheduler). 

The data scheduling stack on the right-hand-side of Figure 8 has been modelled after AliEn 
(http://arxiv.org/abs/cs.dc/0306068). There are possible solutions available for some parts, 
like Stork from Condor and the AliEn file transfer daemon (FTD).  

Also, the underlying resource that is being managed is not only the storage (which actually 
may have a VO-specific interface to it) but also the network(s) connecting the given site to 
the WAN, so the right-hand-side of is over-simplified.  

3.15.1 Transfer Wire Protocol 
The actual wire protocol being used to transfer the files is independent of the data scheduling 
stack. It should be possible to slot in different protocols in a pluggable manner. We will 
support at least GridFTP as a wire protocol. 

3.15.2 File Transfer Service 
For the initial prototype we plan to provide a File Transfer Service (FTS) and a File 
Placement Service, explained below. Why do we need the FTS? The current implementation 
of file transfer in SRM or simply through a GridFTP server (and also RFT) do not provide 
transfer queues. Also, SRM copy and GridFTP put are not persistent. If the server dies, the 
copy processes are gone. Globus’s Reliable File Transfer service will manage the dying 
servers but does not deal with ‘smart’ queuing either, so many processes requesting the same 
copy are possible. 
The Data Transfer service maintains and manages a queue of pending transfers across its 
allocated bandwidth at a given site. A user can request the replication of a given file from one 
site to another if he knows the file to exist at a given source and has proper access rights at the 
given destination. However, if the source is not known, the Data Placement service may find 
the ‘best’ source based on network monitoring to be used.  
The transfer scheduling and replication methods are described in detail below. The transfer 
scheduling is based on the AliEn transfer services described below. The replication APIs are 
based on the EDG replica manager. The File Transfer Service does not include registration in 
the catalogs. The File Placement Service is responsible for catalog interaction. The File 

Computing Farm 

Batch Queues 

Grid Job Feeder 

Scheduler 

Data Store 

Transfer Queue 

Scheduler 

per site 

Condor-G 

GHAP 

LSF, 
PBS, 
.. 

Grid Trans feeder 

per site 

per VO per VO 



 

 
 DRAFT 33 / 132
 

Placement Service makes use of the File Transfer Service queue internally on behalf of the 
user.  
Each FTS is associated with a site. Just like the SE, the data transfer service should be able to 
serve more than one virtual organization. It can be argued that the FTS is actually an integral 
part of a ‘Storage Element’.  
 

3.15.2.1 Initial Components used for Prototype 
• AliEn FTD 

3.15.3 File Placement Service 
The placement service is a service that will initiate transfer (i.e. make use of the FTS) on the 
user’s behalf. This service API enables the user to create new replica instances. It does also 
involve registrations in the catalogs. The operations are atomic, however, system failures may 
leave the catalogs and the actual data content of the SEs involved in an inconsistent state.  
 

3.15.3.1 Initial Components used for Prototype 
• EDG replica manager 
• AliEn file placement services 

3.16 FILE AND REPLICA CATALOG 
The file catalog is the starting point for file-based data management. In the Grid the user 
identifies her files by logical file names (LFNs). The LFN is the key by which the Grid 
services locate the actual replicas of the files. The replicas are identified by SURLs, i.e. each 
replica has its own SURL, specifying implicitly which SE needs to be contacted to extract the 
data. Usually, users should not have to deal with SURLs, in all their scope the only names 
they should need to use are LFNs. The Grid should provide the look and feel of a single file 
system. 
To give this illusion, the Grid data management middleware has to keep track of SURL - LFN 
mappings in a scalable manner. The Grid File Catalog provides the logical file system view to 
the user, with all the functionality to group files into directories and to provide access control 
through posix ACLs. The Grid Replica Catalog provides the mapping of the replicas.  

3.16.1 Concepts 

3.16.1.1 Terminology of File Names 
We define the terms:  

• SURL Storage URL: This is a physical instance of a file replica. Also referred to as 
the Physical File Name (PFN). 

• LFN Logical File Name: A logical (human readable identifier) for a file. LFNs are 
mutable, i.e. they can be changed by the user. 

• GUID Globally unique ID: A logical identifier guaranteed unique by construction, 
regardless of where it is produced. GUIDs are immutable, i.e. they cannot be changed 
by the user. Once a file acquires a GUID it must not be changed otherwise 
consistency cannot be assured. Also, GUIDs are being used by the applications (like 
POOL) to provide external pointers. If these change, the application will suddenly 
point to the wrong file. 

 



 

 
 DRAFT 34 / 132
 

The mapping we consider is 1 LFN to 1 GUID to many SURL. It is a requirement of the LFN 
that it be unique. The namespace of the LFN is a directory structure, e.g. 
/grid/atlas.lhc.org/production/run/07/123456/calibration/cal/cal-table100 

 
Figure 9: The mapping model. The introduction of the GUID (which is entirely kept 
internal) allows to distribute the catalog across the wide area and to catch accidental 
duplicate LFNs should they occur.  

We define the LFN here to be the primary logical filename for that logical file. This full name 
must be unique within a VO and should be accessible to the entire VO. Secondary logical 
references are discussed below. The internal GUID does not need to be exposed to the 
users, who will usually only see the human readable LFN. The purpose of the internal 
GUID is to allow recovery in the case of clashes where two files are given the same LFN. An 
example case where this might occur is when a batch farm producing some output is 
disconnected from the wide area network and registers a new file (and a new LFN) in its 
Local File Catalog. Upon reconnection, the Local File Catalog tries to resync with the rest of 
the world, and finds the LFN already registered. The clash can be dealt with by some 
configurable policy, the easiest of which would be to mail an administrator. The GUID then 
gives a guaranteed-unique handle that the administrator can use to reference the file while 
dealing with the clash. The typical resolution would be to assign the file a different LFN. In 
general, the application should take reasonable steps to ensure that the LFN is unique; the 
process above is only for recovery purposes. 
The SURL is what the storage resource (SE) uses to access the file. In the application 
discussed here, users should not see the SURL, only the logical filename and its directory 
structure.  
For the logical side, the analogy from the UNIX file system is: The GUID is like the inode. 
The logical filename is a unique hard link to that inode. 

3.16.1.2 Master Replica 
The master replica is the single one replica where write and update operations are allowed. 
This is also the master source for replications. If the master replica is lost, it might be 
recovered from other replicas or not, based on policies. A master replica should always be 
kept on a ‘strategic’ SE (see 3.14.1.2). 

3.16.1.3 Catalog Responsibilities 
The file and replica catalogs store part of the mappings described in Figure 9. The file and 
replica catalogs are responsible for part of the mapping space as shown below in Figure 10. 

GUID 

SURL 

SURL 

SURL 

LFN 



 

 
 DRAFT 35 / 132
 

 

Figure 10 The responsibilities of the file and replica catalogs. 

The File Catalog may be also a single centrally deployed catalog if the LFN has to be 
assuredely unique. 

3.16.2 Functional concepts 
We define the concept of a logical directory. The directory is just as in a normal file system a 
list of files and other directories. It can be navigated in the same manner. The full logical 
filename path contains also implicitly directory structure that can be navigated in such a 
manner to reference all the logical files for a given VO. The grid middleware dereferences the 
logical filename to the SURLs, the physical instances of the file. The posix ACL semantics 
are also enforced through the catalog. 

3.16.2.1 Metadata 
In the proposed specification the Metadata Catalog module may be direcly queried through 
the File Catalog. The Metadata Catalog has a specific interface which returns a set of LFNs 
(limited to a maximal size) for a query. The schema and content of the Metadata Catalog 
needs to be known by the user issuing the query but is not specified by the system. We only 
specify the generic metadata interface and its error modes. This interface is then used by the 
File Catalog and is implicitly exposed through the metadata operations, which also involves 
virtual directories.  

3.16.2.2 Logical directory 
A new logical directory can be created through a simple API call (mkdir, see below). A user 
can copy logical files from other logical directories in to their own directory. Symbolic 
directory links are possible to other directories. 

3.16.2.3 Read-only metadata defined virtual directory 
This is a logical directory created from a metadata query (see mkdir API section). A user 
defines a metadata query whose output is a set of logical files that are then made accessible 
through the virtual directory as symlinks. Only a limited set of operations are available in 
such directories. We do not foresee the possibility to have subdirectories in virtual directories 
for example. Also, adding files to a virtual directory is only possible by refreshing the original 
query. 
Virtual directories can be created with the grid_mkvdir command by specifying a metadata 
query. The result set is displayed as an enumerated set of symlinks in the directory. The query 
can be refreshed explicitly by issuing the grid_vdir_refresh command. The contents of the 
directory do not change before such a refresh operation is issued. Virtual directories have a 
well-defined maximal size which cannot be exceeded. 

File Catalog  
 
 
 
 
 
Replica Catalog 

SURL 

SURL 

GUID LFN Master 
SURL 



 

 
 DRAFT 36 / 132
 

3.16.2.4 Symlinks 
Similarly to symbolic links in Unix, LFN may have a nonzero number of symlinks. Symbolic 
links however have always be given using absolute paths. It has the same semantics as the 
unix filesystem symlinks, i.e. they are weak and could point to non-existing LFNs. Any 
operation on the target LFN does nothing to update the link, symbolic links can create cycles, 
etc. 

3.16.2.5 HEPCAL Datasets 
The HEPCAL DataSet concept maps to a logical directory which has associated metadata 
linked to it through the Metadata Catalog. The virtual data concept maps to the virtual 
directories.  
 

3.16.3 Issues, Discussion 

3.16.3.1 Security 
By imposing posix ACLs on the filesystem the security semantics are rather straightforward. 
This should also help in avoiding concurrency issues when writing into the catalog since each 
user will have only limited access rights in the LFN namespace and there should be only a 
finite set of administrators per VO who have full access rights for all of their LFN tree. The 
probability of two users with the same access rights to write into the catalog in the same 
directory in a distributed system is therefore low. 

3.16.3.2 Logical file namespace 
The logical namespace needs to be unique. If we really want to exploit the filesystem 
semantics, it would be desirable to agree on some properties of the logical file names, as it is 
the case also for distributed file systems. If we take AFS as an example, it declares its root to 
be /afs followed by the AFS cell name. A similar idea could be applied to the Grid File 
Catalog namespace, i.e. start with /grid followed by the virtual organization name. Below this 
namespace each VO can define their own structure to prevent conflicts. 

3.16.3.3 Scalability vs. Consistency 
The File Catalogs that have been deployed to date are all deployed centrally and therefore are 
a single point of failure. The central catalog model has obviously excellent consistency 
properties (concurrent writes are always managed at the same place) but it does not scale to 
many dozens of sites. There are two possibilities to solve this issue: 

1. Database Replication. The underlying database is replicated using native database 
replication techniques. This however means a lock-in to a vendor-specific solution. 
Currently commercial database vendors like Oracle provide multi-master database 
replication options which could be exploited, open-source solutions are not really 
mature yet, so this option has its limitations. 

2. Lazy database synchronization exploiting the specific semantics of the File Catalog 
using reliable messaging to propagate the updates. Reliable messaging technologies 
are available (just like database technologies under point 1) both commercially and in 
the open source domain. The File Catalog semantics are rather simple and very 
specific for catalog write operations, so that every time a local write operation occurs, 
it can be distributed through a reliable message queue to all remote catalogs. This 
way one can have the same effect as under solution 1 above but without the need for 
vendor lock-in. 

The proposal is to go with solution 2 with solution 1 as a fall-back option. Consistency might 
be broken in both models i.e. it is possible to register the same LFN in two remote catalogs at 



 

 
 DRAFT 37 / 132
 

the same time such that a conflict will occur. The reconciliation techniques apply in both 
cases, however for case 2 we can be specific to the semantics of the system and exploit the 
uniqueness of the GUIDs, 
 
Additional types. 
There are additional types and structures to be precisely defined (wrt what is specified in the 
appendix), including simple types like timestamps but possibly complex ones as: machine 
data (SE), policies, tags, security objects and other types to be interchanged/reached via other 
services. 
 
Bulk operations 
Bulk operations have been requested by many people to increase performance and to optimise 
interaction with the Grid services. A simple grid_execute command might be the solution that 
takes an XML document containing all the operations that the user wants to perform in one 
go. The XML structure needs to be defined. Open issues involve behaviour on failures, 
transactional consistency, session management. 
 
Metadata, HEPCAL DataSets 
Hepcal only specifies dataset metadata, which would be. Do we also specify metadata on 
files? 
Virtual directories are the result of a metadata query.  
 
Sessions 
Most methods in the complex and basic category can be extended to include sessions, which 
would add a session structure to each call to be tracked. This slows things down but of course 
increases the functionality and robustness. Should we aim for providing such sessioned 
versions of all calls? 
 

3.16.4 Initial Components used for Prototype 
• AliEn File Catalog 
• EDG Replica catalog (RLS) 

 

3.17 METADATA CATALOG 
The Metadata Catalogue Service contains additional information (arbitrary and extensible set 
of attributes) about the contents of the available files. These metadata are used for querying 
the Metadata Catalogue in the search for the datasets meeting the required criteria.   
The metadata catalog interface is defined to serve a very well defined set of tasks. The 
metadata can be generic or file-based. The file-based metadata always assignes metadata to 
logical file names or GUIDs, and has therefore more specific semantics than generic 
application metadata. 
All metadata is application specific and therefore all metdata catalogs should optimally be 
provided by the applications and not the core middleware layer. There can be callouts to these 
catalogs from within the middleware stack through some well-defined interfaces, which the 
application metadata catalogs can choose to implement. The File-based metadata API is such 



 

 
 DRAFT 38 / 132
 

an interface, it’s being used by the file catalog to interact with the metadata catalog. Per VO 
there can be only one such catalog, as there is only one file catalog. 

3.17.1 File-based Metadata API 
File-based metadata is application-specific, so only generic key-value pairs are being used at 
this point to define metadata. 

API call Description 
grid_md_add_tag Add a tag of a certain type to a given file 
grid_md_remove_tag Remove the tag from the file 
grid_md_show_tags Show tags and their type associated with a file. 
grid_md_tag_exists Ask whether a tag exists for a given file 
grid_md_set_tag_value Set the value of a given tag of a file 
grid_md_get_tag_value Retrieve the value of a tag of a file 
grid_md_list_files_by_tag List all files having a given value for a tag in a 

directory, with offset and number of results to 
return 

grid_md_get_files_by_tag_search Find all files matching a tag query, starting from a 
given directory, with offset and number of results 
to return. 

grid_md_count_files_by_tag_search Find the number of files matching a tag query. 
grid_md_describe_tags Describe the existing tags. This will list the schema 

as it is seen through the metadata API. 
 
 

3.18 PACKAGE MANAGER 
The Package Manager Service is a specialised database for the available software packages. It 
keeps track of the package names, versions and their locations in data repositories, usually 
Storage Elements. The software package dependencies information is used by installation 
procedures to insure coherency between the installed packages. The service provides also the 
information about the lifetime of the packages that is used for the clean up of the obsolete 
versions installed on CE’s. 
 
The packet manager relates to the data services discussed above as such that it can make use 
of the LFN logical namespace and of the grid storage to keep all the packets and to make 
them accessible to everyone through the grid. There may be a convention to keep all packets 
in a well-defined namespace of the LFN tree structure. 
To be added at a later phase of the project.  
 



 

 
 DRAFT 39 / 132
 

4 REFERENCES 
 
[R1] D2.1 Report on Current Technology: Data Access and Mass Storage, EDG Deliverable 

2.1, 20 December 2001. http://cern.ch/edg-wp2/docs/DataGrid-02-D2.1-0105-2 0.pdf 
[R2] Wolfgang Hoschek, Javier Jaen- Martinez, Peter Kunszt, Ben Segal, Heinz Stockinger, 

Kurt Stockinger, Brian Tierney,  Data Management (WP2) Architecture Report , EDG 
Deliverable 2.2, http://edms.cern.ch/document/332390 

[R3] Data Management Workpackage, EU DataGrid: D2.2.A1 Addendum to the Data 
Management Architecture Report (Covering Testbed Release 2.0), EDG Deliverable 
2.2.A1 http://edms.cern.ch/document/374107/addendum.pdf 

[R4] Data ManagementWorkpackage, EU DataGrid: D2.5 Components and Documentation 
for the Final Project Release. 
https://edms.cern.ch/file/407063/1/finalDocumentationWP2.pdf 

[R5] DataGrid WP1, Definition of Architecture, Technical Plan and Evaluation Criteria for 
Scheduling, Resource Management, Security and Job Description, Technical Report, 
EU DataGrid Project. Deliverable D1.2, September 2001. 
https://edms.cern.ch/file/332413/1/datagrid-01-d1.2-0112-0-3.pdf 

[R6] W. Allcock, J. Bester, J. Bresnahan, A. Chernevak, I. Foster, C. Kesselman, S. Meder, 
V. Nefedova, D. Quesnal, S. Tuecke;  Data Management and Transfer in High 
Performance Computational Grid Environments.  Parallel Computing, 2002. 
http://www.globus.org/research/papers/dataMgmt.pdf 

[R7] CASTOR web-site: http://cern.ch/castor 
[R8] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane:  A Java Commodity Grid 

Kit , Concurrency and Computation: Practice and Experience, 13(8-9), 2001. 
http://www.globus.org/research/papers/vonLaszewski cog-cpe-final.pdf 

[R9] Heinz Stockinger, Flavia Donno, Erwin Laure, Shahzad Muzaffar, Peter Kunszt, 
Giuseppe Andronico, and Paul Millar. Grid Data Management in Action: Experience 
in Running and Supporting Data Management Services in the EU DataGrid Project. In 
Computing in High Energy Physics (CHEP 2003), La Jolla, California, March 24-28 
2003. 

[R10] Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Erwin Laure, 
Sophie Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger,William Bell, David 
Cameron, Gavin Mc- Cance, Paul Millar, Joni Hahkala, Niklas Karlsson, Ville 
Nenonen, Mika Silander, Olle Mulmo, Gian-Luca Volpato, Giuseppe Andronico, 
Federico DiCarlo, Livio Salconi, Andrea Domenici, Ruben Carvajal-Schiaffino, and 
Floriano Zini.Next-Generation EU DataGrid Data Management Services. In 
Computing in High Energy Physics (CHEP 2003) , La Jolla, California, March 24-28 
2003. 

[R11] Heinz Stockinger, Asad Samar, Shahzad Muzaffar, and Flavia Donno. Grid Data 
Mirroring Package (GDMP). Scientific Programming Journal - Special Issue: Grid 
Computing, 10(2):121-134, 2002. 

[R12] SRM documents. http://sdm.lbl.gov/srm-wg/documents.html 
[R13] H. B. Newman, I.C. Legrand, MonaLisa: A Distributed Monitoring Service 

Architecture, these proceedings, MOET001 
[R14] MONARC. http://www.cern.ch/MONARC/ 
[R15] http://doc.in2p3.fr/bbftp/ 
[R16] http://asg.web.cmu.edu/sasl/ 



 

 
 DRAFT 40 / 132
 

[R17] DataGrid Security Coordination Group: D7.5 Security Requirements and testbed 1 
security implementation. https://edms.cern.ch/document/340234/4.0 

[R18] Shawn Mullen et al.: Grid Authentication Authorization and Accounting 
Requirements, GWD-I GGF SiteAAA RG, http://www.ppdg.net/pa/ppdg-
pa/siteaa/GGF-SiteAAA-RG/draft-ggf-saar-reqs-4.txt 

 
 



 

 
 DRAFT 41 / 132
 

API Definitions 

API AND GRID ACESS SERVICE 
 
The initial API will follow the AliEn API as depicted in Figure 11.  



 

 
 DRAFT 42 / 132
 

TAliEnAPI

TAliEnAPI()
<<virtual>> ~TAliEnAPI()
ReuseApiServer(user :  const c har*) : int
StartApiServer(user : const char*) : int
StopA piServer() :  int
SetApiServerUrl(url : const  char*) :  void
GetApiUser() : const char*
RequestPROOFSession(user : const char*, ns it es : int, s ites : string**, nt imes : string**, starttime : tim e_t, durat ion : tim e_t) : ProofSession_T*
QueryPROOFS ession(proof :  ProofSession_T*) : P roofSessionStatus_T
ListPROOFSes sions(sess ionId : int) : void
ListPROOFDaemons() : void
CancelPROOFSession(sessionId : int) : bool
CancelPROOFSession(proof : ProofSession_T*) :  bool
OpenDir(cname :  const c har *) :  RES ULTHANDLE
CloseResult(hResul t : c onst RE SULTHANDLE) : void
ResetResul t(hResult : const RESULTHANDLE) : void
ReadResult (hResult : const RESULTHA NDLE) :  cons t s truct Resul t_T*
MkDir(dir : const char *, m akeal l : const  bool = false) : int
Rm Dir(dir : const  char *, deleteall  : const bool = false) : int
Rm (lfn : const char *, deleteall : cons t bool = false) : int
Cp(source :  const c har *,  t arget : const char *) : int
Mv(source :  const c har *,  t arget : const char *) : int
AddFile(l fn : const char *, pfn :  const c har *,  size : int = -1, se : const char* = NULL, guid : const char* = NULL) : int
AddFileMirror(lfn : const char * , pfn : const char *, se : c onst char *) : int
RegisterFi le(lfn : const char * , pfn : const char *) : in t
GetPhys icalFi leNames(lfn : const char *) : RESULTHA NDLE
AddTag(l fn : const char *, tagName : const char *) : int
RemoveTag(lfn : const char *, tagName : const  char *) : int
GetTags(lfn : cons t char *) :  RESULTHANDLE
AddAt tribute(lfn : cons t char *, tagName : const char *, at trname : const char *, attrval  :  const char *) : int
DeleteAttribute(lfn : const char *, tagNam e : cons t char *, attrnam e :  cons t c har *) :  int
GetAttributes(lfn : const char * , tagName : const char *) : RESULTHA NDLE
Chmod(lfn : cons t char*, mode :  m ode_t ) : int
Chown(lfn : c onst char*, owner :  const c har* , group : const char*) : int
GetFile(lfn :  const c har*, localdest : const char* = NULL) : char*
SubmitJob(jd lfile : const char *) : int
GetJobStatus(JobID : int) :  JobStatus _T*
Find(path : const  char*, file : const char*,  condit ions  :  const char* = NULL) : RESULTHA NDLE
FindEx(path : const  char*, file : const char*,  condit ions : const char* = NULL) : RESULTHA NDLE
FindExCount (path : const char*, file : cons t char*, conditions : const char* = NULL) : RE SULTHANDLE
Ki llJob(JobId : int ) : int
ResubmitJob(JobId : int) : int
GetAccessPath(lfn : const  char*, mode : bool = false, se : const char* = NULL) : AccessPath_T*
GetFileURL(se : const  char*, path : c onst char*) : char*
open(lfn : const char *, mode : int, flags : mode_t) : GRIDFILEHANDLE
close(handle : GRIDFILEHANDLE) :  int
read(handle :  GRIDFILE HANDLE, buffer : void*, size : long, offs et : long long) : int
writ e(handle : GRIDFILEHANDLE, buffer :  void*, size :  long, offset : long long) : int
fstat(handle :  GRIDFILE HANDLE, statbuf : struct stat *) : int
fsync(handle : GRIDFILEHANDLE) :  int
fchm od(handle : GRIDFILEHANDLE, mode :  mode_t ) : int
fchown(handle :  GRIDFILEHANDLE, owner :  uid_t, group : gid_t) : int
stat(lfn : const char*,  statbuf : struct stat*) : int
lstat(lfn : const char*, statbuf : struct s tat *) : int
opendir(dir : const char *) : GRIDFILEHANDLE
readdir(handle : const GRIDFILEHANDLE) : c onst GRIDFILEENTRY*
closedir(handle : c onst GRIDFILEHANDLE) : int
OpenDirInternal(cname : const  char *) : RESULTHANDLE
SimpleFunc(id : const int , dir : cons t char *, flag :  const bool) : int
SimpleFunc(func : cons t char *, inargs : cons t int,  : ... ) : int
GetDataInternal (id : const int, arg1 :  const c har *,  arg2 : const char* = NULL, arg3 : const char * = NULL) : RESULTHANDLE
SoapCall(cfunction : const char*, arg : c onst char*, cresult : char**) : int
SoapCall(cfunction : const char*, arg : c onst char*, paramlist : TCppS oap::ParamList_T*) : int
SoapCall(cfunction : const char*, cargs : const  char* [] , inumarg : cons t int, paramlist : TCppSoap::P aramList_T*) : int
SoapCall(cfunction : const char*, cargs : const  char* [] , inumarg : cons t int, cres ult : char**) : int
GetNextFreeResultHandle() : RESULTHANDLE
GetNextFreeGridFileHandle() : GRIDFILEHANDLE

(f ro m C++  Reverse Eng ine ered)



 

 
 DRAFT 43 / 132
 

TAlienResult

TAlienResult()
~TAlienResult()
Close()
<<const>> GetCurrent()
<<const>> GetResultCount()
GetValue()
Next()
List()
Reset()

(from C++ Reverse Engineered)

TAlienProof

DSetProofServiceAnswer()
DSetRepack()
TAlienProof()
~TAlienProof()
Request()
Connect()
GetSiteBlob()
PrintSiteBlob()
DSetMsnExtraction()

(from C++ Reverse Engineered)

TAliEnAPI

TAliEnAPI()
<<virtual>> ~TAliEnAPI()
ReuseApiServer()
StartApiServer()
StopApiServer()
SetApiServerUrl()
GetApiUser()
RequestPROOFSession()
QueryPROOFSession()
ListPROOFSessions()
ListPROOFDaemons()
CancelPROOFSession()
CancelPROOFSession()
OpenDir()
CloseResult()
ResetResult()
ReadResult()
MkDir()
RmDir()
Rm()
Cp()
Mv()
AddFile()
AddFileMirror()
RegisterFile()
GetPhysicalFileNames()
AddTag()
RemoveTag()
GetTags()
AddAttribute()
DeleteAttribute()
GetAttributes()
Chmod()
Chown()
GetFile()
SubmitJob()
GetJobStatus()
Find()
FindEx()
FindExCount()
KillJob()
ResubmitJob()
GetAccessPath()
GetFileURL()
open()
close()
read()
write()
fstat()
fsync()
fchmod()
fchown()
stat()
lstat()
opendir()
readdir()
closedir()
OpenDirInternal()
SimpleFunc()
SimpleFunc()
GetDataInternal()
SoapCall()
SoapCall()
SoapCall()
SoapCall()
GetNextFreeResultHandle()
GetNextFreeGridFileHandle()

(from C++ Reverse Engineered)

TAlien

TAlien()
~TAlien()
API()
GetUser()
RequestProofSession()
GetProofSessionStatus()
ListProofDaemons()
ListProofSessions()
KillProofSession()
KillProofSession()
OpenDir()
ReadResult()
CloseResult()
ResetResult()
Mkdir()
Rmdir()
Rm()
Cp()
Mv()
Chmod()
Chown()
AddFile()
AddFileMirror()
RegisterFile()
GetFile()
GetPhysicalFileNames()
Find()
FindEx()
AddTag()
RemoveTag()
GetTags()
AddAttribute()
DeleteAttribute()
GetAttributes()
SubmitJob()
GetJobStatus()
KillJob()
ResubmitJob()
GetAccessPath()
GetFileUrl()
Open()
Close()
Read()
Write()
Fstat()
Fsync()
Fchmod()
Fchown()
Link()
Symlink()
Readlink()
Stat()
Lstat()
Opendir()
Readdir()
Closedir()
CreateGridResult()
CreateGridProof()

(from C++ Reverse Engineered)

+fAPI

 
Figure 11: C++ API and an TAlien (implementation of ROOT TGrid ) classes 



 

 
 DRAFT 44 / 132
 

 



 

 
 DRAFT 45 / 132
 

Information and Monitoring Services 
 Package rgma 

Class Summary 

Interfaces 

ConsumerFactory A factory to create Consumers. 

ProducerFactory A factory to create Primary, Secondary and On Demand Producers. 

Resource A Resource is an object in a Web Service that the API can interact with, either a 
Producer or a Consumer. 

Consumer A client uses a Consumer to retrieve data from one or more producers. 

Producer A Producer allows a client to create, declare and undeclare tables. 

OnDemandProducer A client uses an OnDemandProducer to publish data into R-GMA when the cost of 
creating each message is high. 

PrimaryProducer A client uses a PrimaryProducer to publish information into R-GMA. 

SecondaryProducer A client uses a secondary producer to republish or store information from other 
producers. 

 



 

 
 DRAFT 46 / 132
 

rgma 

 ConsumerFactory 

Description 
A factory to create Consumers. 

Member Summary 

Methods 
 Consumer createConsumer(SelectStatement select, QueryType queryType, 

StringList voNames)
 

Creates a consumer with a specific SELECT query and query type that will use a 
mediator to find relevant producers from which to receive data within the specified 
VO’s. 

 

Methods 

createConsumer(SelectStatement, QueryType, StringList) 
public rgma.Consumer createConsumer(rgma.SelectStatement select, 

rgma.QueryType queryType, rgma.StringList voNames) 
throws RemoteException, RGMAException 

Creates a consumer with a specific SELECT query and query type that will use a mediator to 
find relevant producers from which to receive data. The Consumer will only consume data 
from the VO’s listed in voNames. 

Parameters: 
select - An SQL SELECT statement. 
queryType - The type of the query. 
voNames - List of VO names to consume from. 

Returns: 
The new consumer. 

Throws: 
RemoteException - If the service could not be contacted. 
RGMAException - If the select statement is invalid. 
RGMAException - If no valid VO names are provided. 
RGMAException - If no endpoint is defined. 



 

 
 DRAFT 47 / 132
 

rgma 

 ProducerFactory 

Description 
A factory for Primary, Secondary and On Demand Producers. 

Member Summary 

Methods 
 OnDemandProducer createOnDemandProducer(URI uri, ProducerType producerType, 

StringList voNames)
 

Creates an on-demand producer of the specified type. 

 PrimaryProducer createPrimaryProducer(StorageLocation storageLocation, 
ProducerType producerType, StringList voNames)

 

Creates a primary producer that uses the specified data storage and producer type. 

 SecondaryProducer createSecondaryProducer(StorageLocation storageLocation, 
ProducerType producerType, StringList voNames)

 

Creates a secondary producer, that uses a primary producer with the specified 
attributes to republish information. 

 

Methods 

 createOnDemandProducer(URI, ProducerType, StringList) 
public rgma.OnDemandProducer createOnDemandProducer(URI uri, 

rgma.ProducerType producerType, rgma.StringList voNames) 
throws RemoteException, RGMAException 

Creates an on-demand producer. 

Parameters: 
uri - The URI for the system that will respond to queries. 
producerType - The type of producer. 
voNames - List of VO names to publish to. 

Returns: 
A new on-demand producer. 

Throws: 
RemoteException - If the service could not be contacted. 
RGMAException - If no endpoint is defined. 
RGMAException - If the URI is invalid. 

createPrimaryProducer(StorageLocation, ProducerType, StringList) 
public rgma.PrimaryProducer createPrimaryProducer(rgma.StorageLocation 

storageLocation, rgma.ProducerType producerType, 



 

 
 DRAFT 48 / 132
 

rgma.StringList voNames) 
throws RemoteException, RGMAException 

Creates a primary producer that uses the specified data storage and producer type. 

Parameters: 
storageLocation - The location to store tuples. 
producerType - The type of producer. 
voNames - List of VO names to publish to. 

Returns: 
A new primary producer. 

Throws: 
RemoteException - If the service could not be contacted. 
RGMAException - If no endpoint is defined. 
RGMAException - If the storage location is invalid. 

 createSecondaryProducer(StorageLocation, ProducerType, StringList) 
public rgma.SecondaryProducer createSecondaryProducer(rgma.StorageLocation 

storageLocation, rgma.ProducerType producerType, 
rgma.StringList voNames) 
throws RemoteException, RGMAException 

Creates a secondary producer, that uses a primary producer with the specified attributes to 
republish information. 

Parameters: 
storageLocation - The location to store tuples. 
producerType - The type of producer. 
voNames - List of VO names to publish to. 

Returns: 
A new secondary producer. 

Throws: 
RemoteException - If the service could not be contacted. 
RGMAException - If no endpoint is defined. 
RGMAException - If the storage location is invalid. 



 

 
 DRAFT 49 / 132
 

rgma 

 Resource 

All Known Subinterfaces: 
Consumer, OnDemandProducer, PrimaryProducer, Producer, 
SecondaryProducer 

Description 
A Resource is an object in a Web Service with which an API can interact. In R-GMA, Producers 
and Consumers are both Resources. 

Member Summary 

Methods 
 void close()

 

Closes the resource. 

 void destroy()
 

Closes and destroys the resource. 

 Endpoint getEndpoint()
 

Gets the endpoint of the service/resource the API communicates with. 

 TimeInterval getTerminationInterval()
 

Retrieves the resource’s termination interval. 

 void setTerminationInterval(TimeInterval terminationInterval)
 

Sets the termination interval for this resource. 

 void showSignOfLife()
 

Indicates to the resource that this API is still alive. 

 

Methods 

 close() 
public void close() 

throws RemoteException, UnknownResourceException 

Closes the resource. The resource will no longer be available through this API and will be 
destroyed once it has finished interacting with other components. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the resource could not be found 

 destroy() 
public void destroy() 

throws RemoteException, UnknownResourceException 

Closes and destroys the resource. The resource will no longer be available to any component. 



 

 
 DRAFT 50 / 132
 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the resource could not be found 

getEndpoint() 
public rgma.Endpoint getEndpoint() 

Gets the endpoint of the service/resource the API communicates with. 

Returns: 
The service/instance identifier 

 getTerminationInterval() 
public rgma.TimeInterval getTerminationInterval() 

throws RemoteException, UnknownResourceException 

Retrieves the resource’s termination interval. 

Returns: 
The termination interval as a TimeInterval. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the resource could not be found 

See Also: 
setTerminationInterval(TimeInterval) 

 setTerminationInterval(TimeInterval) 
public void setTerminationInterval(rgma.TimeInterval terminationInterval) 

throws RemoteException, UnknownResourceException, RGMAException 

Sets the termination interval for this resource. 

Parameters: 
terminationInterval - The time interval after which the resource may destroy 
itself if no contact has been made from the API. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the resource could not be found 
RGMAException - If the termination interval is invalid (e.g. in the past) 

See Also: 
getTerminationInterval() 

showSignOfLife() 
public void showSignOfLife() 

throws RemoteException, UnknownResourceException 

Indicates to the resource that this API is still alive. This should be used to keep a resource 
alive when no other method needs to be called. 



 

 
 DRAFT 51 / 132
 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the resource could not be found 



 

 
 DRAFT 52 / 132
 

rgma 

 Consumer 

All Superinterfaces: 
Resource 

Description 
A client uses a Consumer to retrieve data from one or more producers. 

Member Summary 

Methods 
 void abort()

 

Aborts the current query. 

 boolean canPop()
 

Determines if there is data available to pop. 

 boolean hasAborted()
 

Determines if the last query has aborted. 

 boolean isExecuting()
 

Determines whether the last query is still executing. 

 ResultSet pop()
 

Retrieves all data from the consumer that it has received from producers. 

 ResultSet pop(int maxCount)
 

Retrieves at most maxCount tuples from the consumer that it has received from 
producers. 

 void start(TimeInterval timeout)
 

Starts this consumer’s query, terminating after the specified time interval. 

 

Inherited Member Summary 

Methods inherited from interface Resource 

close(), destroy(), getEndpoint(), getTerminationInterval(), 
setTerminationInterval(TimeInterval), showSignOfLife() 

 

Methods 

 abort() 
public void abort() 

throws UnknownResourceException, RemoteException 

Aborts the current query. 



 

 
 DRAFT 53 / 132
 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 

 canPop() 
public boolean canPop() 

throws UnknownResourceException, RemoteException 

Determines if there is data available to pop. 

Returns: 
True if the consumer’s buffer contains data. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 

hasAborted() 
public boolean hasAborted() 

throws UnknownResourceException, RemoteException 

Determines if the last query has aborted. 

Returns: 
True if the query was aborted and didn’t stop of its own accord. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 

 isExecuting() 
public boolean isExecuting() 

throws UnknownResourceException, RemoteException 

Determines whether the last query is still executing. 

Returns: 
True if the query is still executing. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 

 pop() 
public rgma.ResultSet pop() 

throws UnknownResourceException, RemoteException, RGMAException 

Retrieves all data from the consumer that it has received from producers. 

Returns: 
A ResultSet containing the received tuples. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 



 

 
 DRAFT 54 / 132
 

RemoteException - If the service could not be contacted. 
RGMAException - If there is no data to pop. 

pop(int) 
public rgma.ResultSet pop(int maxCount) 

throws UnknownResourceException, RemoteException, RGMAException 

Retrieves at most maxCount tuples from the consumer that it has received from producers. 

Parameters: 
maxCount - The maximum number of tuples to retrieve. 

Returns: 
A ResultSet containing the received tuples. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 
RGMAException - If there is no data to pop. 

 start(TimeInterval) 
public void start(rgma.TimeInterval timeout) 

throws UnknownResourceException, RemoteException, RGMAException 

Starts this consumer’s query, terminating after the specified time interval. There is no infinite 
interval; just set the timeout to be very large if this is the effect you want (e.g. 1000 days). 

Parameters: 
timeout - Time interval after which the query will automatically be aborted. 

Throws: 
UnknownResourceException - If the consumer resource is not found. 
RemoteException - If the service could not be contacted. 
RGMAException - If the query is currently executing. 



 

 
 DRAFT 55 / 132
 

rgma 

Producer 

All Superinterfaces: 
Resource 

All Known Subinterfaces: 
OnDemandProducer, PrimaryProducer, SecondaryProducer 

Description 
A Producer allows a client to create, declare and undeclare tables. A client does not use a Producer 
directly, but rather one of its sub-types: PrimaryProducer, SecondaryProducer or 
OnDemandProducer. 

See Also: 
PrimaryProducer, SecondaryProducer, OnDemandProducer 

Member Summary 

Methods 
 void createTable(CreateTableStatement createTable, 

TableAuthorization tableAuthorization)
 

Creates a table, defining its structure and authorization. 

 void declareTable(String tableName, Predicate predicate)
 

Declares a table into which this Producer can publish. 

 void undeclareTable(String tableName)
 

Undoes a table declaration. 

 

Inherited Member Summary 

Methods inherited from interface Resource 

close(), destroy(), getEndpoint(), getTerminationInterval(), 
setTerminationInterval(TimeInterval), showSignOfLife() 

 



 

 
 DRAFT 56 / 132
 

Methods 

 createTable(CreateTableStatement, TableAuthorization) 
public void createTable(rgma.CreateTableStatement createTable, 

rgma.TableAuthorization tableAuthorization) 
throws RemoteException, UnknownResourceException, RGMAException 

Creates a table, defining its structure and authorization. 

Parameters: 
createTable - An SQL CREATE TABLE statement, defining the column names, 
types etc for this table. 
tableAuthorization - The authorization for this table. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the table already exists and the createTable and 
tableAuthorization don’t match the existing details. 
RGMAException - If the CREATE TABLE statement is invalid. 
RGMAException - If the table authorization is invalid. 

declareTable(String, Predicate) 
public void declareTable(String tableName, rgma.Predicate predicate) 

throws RemoteException, UnknownResourceException, RGMAException 

Declares a table into which this Producer can publish.  A subset of a table can be declared 
using a predicate. 

Parameters: 
tableName - The name of the table to publish into. 
predicate - An SQL WHERE clause defining the subset of a table that this Producer 
will publish. To publish to the whole table, an empty predicate can be defined using new 
Predicate(“”) or new Predicate() 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the tableName is unknown 
RGMAException - If the createTable does not match an existing table description 
RGMAException - If the predicate is invalid 

See Also: 
PrimaryProducer.declareTable(String, Predicate, 
TimeInterval) 

undeclareTable(String) 
public void undeclareTable(String tableName) 

throws RemoteException, UnknownResourceException, RGMAException 

Undoes a table declaration. 



 

 
 DRAFT 57 / 132
 

Parameters: 
tableName - The name of the table to undeclare. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the tableName has not been declared  



 

 
 DRAFT 58 / 132
 

rgma 

OnDemandProducer 

All Superinterfaces: 
Producer, Resource 

Description 
A client uses an OnDemandProducer to publish data into R-GMA when the cost of creating each 
message is high. The OnDemandProducer only generates messages when there is a specific query 
from a Consumer. 

Inherited Member Summary 

Methods inherited from interface Producer 

createTable(CreateTableStatement, TableAuthorization), declareTable(String, 
Predicate), undeclareTable(String) 

Methods inherited from interface Resource 

close(), destroy(), getEndpoint(), getTerminationInterval(), 
setTerminationInterval(TimeInterval), showSignOfLife() 

 



 

 
 DRAFT 59 / 132
 

rgma 

 PrimaryProducer 

All Superinterfaces: 
Producer, Resource 

Description 
A client uses a PrimaryProducer to publish information into R-GMA. 

Member Summary 

Methods 
 void declareTable(String tableName, Predicate predicate, 

TimeInterval minRetentionPeriod)
 

Declares a table, specifying the minimum time period for which the tuple must be 
retained. 

 void insert(InsertStatement insert)
 

Publishes data by inserting a tuple into a table, both specified by the SQL INSERT 
statement. 

 void insert(InsertStatementList inserts)
 

Publishes using a list of SQL INSERT statements. 

 

Inherited Member Summary 

Methods inherited from interface Producer 

createTable(CreateTableStatement, TableAuthorization), declareTable(String, 
Predicate), undeclareTable(String) 

Methods inherited from interface Resource 

close(), destroy(), getEndpoint(), getTerminationInterval(), 
setTerminationInterval(TimeInterval), showSignOfLife() 

 

Methods 

 declareTable(String, Predicate, TimeInterval) 
public void declareTable(String tableName, rgma.Predicate predicate, 

rgma.TimeInterval minRetentionPeriod) 
throws RemoteException, UnknownResourceException, RGMAException 



 

 
 DRAFT 60 / 132
 

Declares a table, specifying the minimum time period for which the tuple must be retained. 
Beyond this, a tuple will be removed when there are no longer any consumers interested in it. 

Parameters: 
tableName - The name of the table to declare. 
predicate - An SQL WHERE clause defining the subset of a table that this Producer 
will publish. To publish to the whole table, an empty predicate can be used. 
minRetentionPeriod - The minimum time for which tuples must be retained. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the tableName is unknown 
RGMAException - If the predicate is invalid 
RGMAException - If the minRetentionPeriod is invalid 

See Also: 
Producer.declareTable(String, Predicate) 

insert(InsertStatement) 
public void insert(rgma.InsertStatement insert) 

throws RemoteException, UnknownResourceException, RGMAException 

Publishes data by inserting a tuple into a table, both specified by the SQL INSERT statement. 

Parameters: 
insert - An SQL INSERT statement providing the data to publish and the table into 
which to put it. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the table in the insert has not been declared 
RGMAException - If the inserted tuple does not match its table’s declared predicate 

 insert(InsertStatementList) 
public void insert(rgma.InsertStatementList inserts) 

throws RemoteException, UnknownResourceException, RGMAException 

Publishes using a list of SQL INSERT statements. 

Parameters: 
inserts - A list of SQL INSERT statements. 

Throws: 
RemoteException - If the service could not be contacted. 
UnknownResourceException - If the producer resource could not be found 
RGMAException - If the table in any insert has not been declared 
RGMAException - If any inserted tuple does not match its table’s declared predicate 

See Also: 
insert(InsertStatement) 



 

 
 DRAFT 61 / 132
 

 



 

 
 DRAFT 62 / 132
 

rgma 

 SecondaryProducer 

All Superinterfaces: 
Producer, Resource 

Description 
A client uses a secondary producer to republish or store information from other producers. 

Inherited Member Summary 

Methods inherited from interface Producer 

createTable(CreateTableStatement, TableAuthorization), declareTable(String, 
Predicate), undeclareTable(String) 

Methods inherited from interface Resource 

close(), destroy(), getEndpoint(), getTerminationInterval(), 
setTerminationInterval(TimeInterval), showSignOfLife() 

 

Classes 

CreateTableStatement An SQL CREATE TABLE statement. 

Endpoint A service or resource endpoint. 

EndpointList A list of Endpoint objects. 

InsertStatement An SQL INSERT statement. 

InsertStatementList A list of InsertStatement objects. 

Predicate An SQL WHERE clause. 

ProducerType The type of a producer, specifically the data set that it will store. 

QueryType The type of a consumer query. 

ResultSet A set of tuples, modelled on the java.sql.ResultSet and providing a subset of its 
functionality. 

ResultSetMetaData Column and table details for a ResultSet, modelled on java.sql.ResultSetMetaData. 



 

 
 DRAFT 63 / 132
 

SelectStatement An SQL SELECT statement. 

SQLStatement A generic SQL statement. 

StorageLocation The location where tuples will be stored. 

StringList A list of String objects. 

TableAuthorization Authorization rules for a table. 

TimeInterval Encapsulates a time value and the units being used. 

Types Constants for SQL column types. 

Units Time units. 

Exceptions 

RemoteException An exception thrown when the API is unable to contact a service (e.g. 

RGMAException Exception thrown when an error occurs in the RGMA application. 

UnknownResourceExcepti
on 

Exception thrown when a resource cannot be found in the resource framework. 

 CreateTableStatement 

Declaration 
public class CreateTableStatement extends SQLStatement 

  
rgma.SQLStatement 

   | 
   +--rgma.CreateTableStatement 

Description 
An SQL CREATE TABLE statement. 

Member Summary 

Constructors 
 CreateTableStatement(String createTableStatement)

 

Creates a new CreateTableStatement from a String of SQL. 

 



 

 
 DRAFT 64 / 132
 

Inherited Member Summary 

Methods inherited from class SQLStatement 

getStatement() 

 

Constructors 

CreateTableStatement(String) 
public CreateTableStatement(String createTableStatement) 

Creates a new CreateTableStatement from a String of SQL. 

Parameters: 
createTableStatement - An SQL CREATE TABLE statement as a String. 



 

 
 DRAFT 65 / 132
 

rgma 

 Endpoint 

Declaration 
public class Endpoint 
  
rgma.Endpoint 

Description 
A service or resource endpoint. 
 

Member Summary 

Constructors 
 Endpoint(String url)

 

Creates a new Endpoint object. 

 Endpoint(String url, int resourceId)
 

Creates a new Endpoint object. 

Methods 
 int getResourceId()

 

Gets the resource identifier. 

 String getUrl()
 

Gets the service URL. 
 
 

Constructors 

Endpoint(String) 
public Endpoint(String url) 

Creates a new Endpoint object. 

Parameters: 
url - The service URL. 

 Endpoint(String, int) 
public Endpoint(String url, int resourceId) 

Creates a new Endpoint object. 

Parameters: 
url - The service URL. 
resourceId - The resource identified. 



 

 
 DRAFT 66 / 132
 

Methods 

 getResourceId() 
public int getResourceId() 

Gets the resource identifier. 

Returns: 
The resourceId. 

 getUrl() 
public String getUrl() 

Gets the service URL. 

Returns: 
The service URL 



 

 
 DRAFT 67 / 132
 

rgma 

 EndpointList 

Declaration 
public class EndpointList 
  
rgma.EndpointList 

Description 
A list of Endpoint objects. 

Member Summary 

Constructors 
 EndpointList()

 

Creates a new EndpointList object. 

Methods 
 void addEndpoint(Endpoint endpoint)

 

Add a Endpoint. 

 void addEndpoint(int index, Endpoint endpoint)
 

Add a Endpoint at the specified index. 

 Endpoint getEndpoint(int index)
 

Retrieves the Endpoint with the specified index. 

 int size()
 

Returns the size of the list. 

 
 

Constructors 

 EndpointList() 
public EndpointList() 

Creates a new EndpointList object. 

Methods 

 addEndpoint(Endpoint) 
public void addEndpoint(rgma.Endpoint endpoint) 

Add a Endpoint. 

Parameters: 
endpoint - Endpoint to add. 



 

 
 DRAFT 68 / 132
 

addEndpoint(int, Endpoint) 
public void addEndpoint(int index, rgma.Endpoint endpoint) 

Add a Endpoint at the specified index. 

Parameters: 
index - Index in list. 
endpoint - Endpoint to add. 

 getEndpoint(int) 
public rgma.Endpoint getEndpoint(int index) 

Retrieves the Endpoint with the specified index. 

Parameters: 
index - Index of Endpoint to get ( <= index < size) 

Returns: 
A Endpoint object. 

 size() 
public int size() 

Returns the size of the list. 

Returns: 
The number of Endpoints in the list. 



 

 
 DRAFT 69 / 132
 

rgma 

 InsertStatement 

Declaration 
public class InsertStatement extends SQLStatement 

  
rgma.SQLStatement 

        | 
        +--rgma.InsertStatement 

Description 
An SQL INSERT statement. 

Member Summary 

Constructors 
 InsertStatement(String insertStatement)

 

Creates a new InsertStatement from a String of SQL. 

 

Inherited Member Summary 

Methods inherited from class SQLStatement 

getStatement() 

 

Constructors 

InsertStatement(String) 
public InsertStatement(String insertStatement) 

Creates a new InsertStatement from a String of SQL. 

Parameters: 
insertStatement - An SQL INSERT statement as a String. 



 

 
 DRAFT 70 / 132
 

rgma 

 InsertStatementList 

Declaration 
public class InsertStatementList 
  
rgma.InsertStatementList 

Description 
A list of InsertStatement objects. 

Member Summary 

Constructors 
 InsertStatementList()

 

Creates a new InsertStatementList object. 

Methods 
 void addInsertStatement(InsertStatement insertstatement)

 

Add a InsertStatement. 

 void addInsertStatement(int index, InsertStatement 
insertstatement)

 

Add a InsertStatement at the specified index. 

 InsertStatement getInsertStatement(int index)
 

Retrieves the InsertStatement with the specified index. 

 int size()
 

Returns the size of the list. 

 
 
 

Constructors 

InsertStatementList() 
public InsertStatementList() 

Creates a new InsertStatementList object. 

Methods 

 addInsertStatement(InsertStatement) 
public void addInsertStatement(rgma.InsertStatement insertstatement) 

Add a InsertStatement. 



 

 
 DRAFT 71 / 132
 

Parameters: 
insertstatement - InsertStatement to add. 

 addInsertStatement(int, InsertStatement) 
public void addInsertStatement(int index, 

rgma.InsertStatement insertstatement) 

Add a InsertStatement at the specified index. 

Parameters: 
index - Index in list. 
insertstatement - InsertStatement to add. 

 getInsertStatement(int) 
public rgma.InsertStatement getInsertStatement(int index) 

Retrieves the InsertStatement with the specified index. 

Parameters: 
index - Index of InsertStatement to get ( <= index < size) 

Returns: 
An InsertStatement object. 

 size() 
public int size() 

Returns the size of the list. 

Returns: 
The number of InsertStatements in the list. 



 

 
 DRAFT 72 / 132
 

rgma 

ProducerType 

Declaration 
public class ProducerType 
  
rgma.ProducerType 

Description 
The type of a producer, specifically the data set that it will store. Either LATEST for just the most 
recent tuples for each primary key, or HISTORY for all tuples. 

Member Summary 

Fields 
static ProducerType HISTORY

 

Store all the tuples. 

static ProducerType LATEST
 

Store just the latest tuples. 

Methods 
 boolean equals(ProducerType pt)

 

Compares two producer type objects. 

 boolean isHistory()
 

Determines if this is a HISTORY producer. 

 boolean isLatest()
 

Determines if this is a LATEST producer. 

 
 

Fields 

 HISTORY 
public static final rgma.ProducerType HISTORY 

Store all the tuples. 

 LATEST 
public static final rgma.ProducerType LATEST 

Store just the latest tuples. 



 

 
 DRAFT 73 / 132
 

Methods 

equals(ProducerType) 
public boolean equals(rgma.ProducerType pt) 

Compares two producer type objects. 

Parameters: 
pt - Another ProducerType 

Returns: 
True if the ProducerTypes are equal 

 isHistory() 
public boolean isHistory() 

Determines if this is a HISTORY producer. 

Returns: 
true if a HISTORY producer, otherwise false. 

 isLatest() 
public boolean isLatest() 

Determines if this is a LATEST producer. 

Returns: 
true if a LATEST producer, otherwise false. 



 

 
 DRAFT 74 / 132
 

rgma 

 QueryType 

Declaration 
public class QueryType 
  
rgma.QueryType 

Description 
The type of a consumer query. There are four types:  

• HISTORY: QueryType.HISTORY  
• LATEST: QueryType.LATEST  
• CONTINUOUS: QueryType.CONTINUOUS  
• CONTINUOUS over a time interval: new QueryType(TimeInterval)  

Member Summary 

Fields 
static QueryType CONTINUOUS

 

Stream data continuously, starting with the next inserted tuple. 

static QueryType HISTORY
 

Retrieve data from HISTORY producers. 

static QueryType LATEST
 

Retrieve data from LATEST producers. 

Constructors 
 QueryType(TimeInterval timeInterval)

 

Creates a new CONTINUOUS QueryType object with a time interval. 

Methods 
 boolean equals(QueryType qt)

 

Compares two QueryTypes. 

 boolean hasTimeInterval()
 

Determines if this QueryType has an associated TimeInterval. 

 boolean isContinuous()
 

Determines if this is a CONTINUOUS query. 

 boolean isHistory()
 

Determines if this is a HISTORY query. 

 boolean isLatest()
 

Determines if this is a LATEST query. 

 
 



 

 
 DRAFT 75 / 132
 

Fields 

CONTINUOUS 
public static final rgma.QueryType CONTINUOUS 

Stream data continuously, starting with the next inserted tuple. 

 HISTORY 
public static final rgma.QueryType HISTORY 

Retrieve data from HISTORY producers. 

 LATEST 
public static final rgma.QueryType LATEST 

Retrieve data from LATEST producers. 

Constructors 

 QueryType(TimeInterval) 
public QueryType(rgma.TimeInterval timeInterval) 

Creates a new CONTINUOUS QueryType object with a time interval. 

Parameters: 
timeInterval - The period over which to retrieve data. 

Methods 

equals(QueryType) 
public boolean equals(rgma.QueryType qt) 

Compares two QueryTypes. 

Parameters: 
qt - Another QueryType. 

Returns: 
True if the QueryTypes are equal. 

 hasTimeInterval() 
public boolean hasTimeInterval() 

Determines if this QueryType has an associated TimeInterval. 

Returns: 
true if it has a TimeInterval, otherwise false. 

 isContinuous() 
public boolean isContinuous() 



 

 
 DRAFT 76 / 132
 

Determines if this is a CONTINUOUS query. 

Returns: 
true if a CONTINUOUS query, otherwise false. 

 isHistory() 
public boolean isHistory() 

Determines if this is a HISTORY query. 

Returns: 
true if a HISTORY query, otherwise false. 

 isLatest() 
public boolean isLatest() 

Determines if this is a LATEST query. 

Returns: 
true if a LATEST query, otherwise false. 



 

 
 DRAFT 77 / 132
 

rgma 

RemoteException 

Declaration 
public class RemoteException 
  
rgma.RemoteException 

Description 
An exception thrown when the API is unable to contact a service (e.g. Producer, 
ConsumerFactory). 

Member Summary 

Constructors 
 RemoteException()

 

Creates a new RemoteException object. 

 RemoteException(String message)
 

Creates a new RemoteException object. 

 
 

Constructors 

 RemoteException() 
public RemoteException() 

Creates a new RemoteException object. 

RemoteException(String) 
public RemoteException(String message) 

Creates a new RemoteException object. 

Parameters: 
message - Error message 



 

 
 DRAFT 78 / 132
 

rgma 

 ResultSet 

Declaration 
public class ResultSet 
  
rgma.ResultSet 

Description 
A set of tuples, modelled on the java.sql.ResultSet and providing a subset of its functionality. 

Member Summary 

Methods 
 void afterLast()

 

Moves the cursor to the end of this ResultSet object, just after the last row. 

 void beforeFirst()
 

Moves the cursor to the front of this ResultSet object, just before the first row. 

 int findColumn(String columnName)
 

Maps the given ResultSet column name to its ResultSet column index. 

 boolean first()
 

Moves the cursor to the first row in this ResultSet object. 

 int getInt(int columnIndex)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as an int in the Java programming language. 

 int getInt(String columnName)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as an int in the Java programming language. 

 ResultSetMetaData getMetaData()
 

Retrieves the number, types and properties of this ResultSet object’s columns. 

 double getReal(int columnIndex)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as a double in the Java programming language. 

 double getReal(String columnName)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as a double in the Java programming language. 

 int getRow()
 

Retrieves the current row number. 

 String getString(int columnIndex)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as a String in the Java programming language. 

 String getString(String columnName)
 

Retrieves the value of the designated column in the current row of this ResultSet 
object as a String in the Java programming language. 

 boolean isAfterLast()
 

Retrieves whether the cursor is after the last row in this ResultSet object. 

 boolean isBeforeFirst()
 

Retrieves whether the cursor is before the first row in this ResultSet object. 

 boolean isFirst()
 

Retrieves whether the cursor is on the first row of this ResultSet object. 



 

 
 DRAFT 79 / 132
 

 boolean isLast()
 

Retrieves whether the cursor is on the last row of this ResultSet object. 

 boolean last()
 

Moves the cursor to the last row in this ResultSet object. 

 boolean next()
 

Moves the cursor down one row from its current position. 

 boolean previous()
 

Moves the cursor to the previous row in this ResultSet object. 

 boolean wasNull()
 

Reports whether the last column read had a value of SQL NULL. 

 
 

Methods 

 afterLast() 
public void afterLast() 

throws RGMAException 

Moves the cursor to the end of this ResultSet object, just after the last row. This method 
has no effect if the result set contains no rows. 

Throws: 
RGMAException - if an RGMA access error occurs or the result set type 
isTYPE_FORWARD_ONLY 

beforeFirst() 
public void beforeFirst() 

throws RGMAException 

Moves the cursor to the front of this ResultSet object, just before the first row. This 
method has no effect if the result set contains no rows. 

Throws: 
RGMAException - if an RGMA access error occurs or the result set type 
isTYPE_FORWARD_ONLY 

 findColumn(String) 
public int findColumn(String columnName) 

throws RGMAException 

Maps the given ResultSet column name to its ResultSet column index. 

Parameters: 
columnName - the name of the column 

Returns: 
the column index of the given column name 

Throws: 
RGMAException - if theResultSet object does not contain columnName or an 
RGMA access error occurs 



 

 
 DRAFT 80 / 132
 

 first() 
public boolean first() 

throws RGMAException 

Moves the cursor to the first row in this ResultSet object. 

Returns: 
true if the cursor is on a valid row; false if there are no rows in the result set 

Throws: 
RGMAException - if an RGMA access error occurs or the result set type 
isTYPE_FORWARD_ONLY 

 getInt(int) 
public int getInt(int columnIndex) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
an int in the Java programming language. 

Parameters: 
columnIndex - the first column is 1, the second is 2, ... 

Returns: 
the column value; if the value is SQL NULL, the value returned is  

Throws: 
RGMAException - if an RGMA access error occurs 

getInt(String) 
public int getInt(String columnName) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
an int in the Java programming language. 

Parameters: 
columnName - the SQL name of the column 

Returns: 
the column value; if the value is SQL NULL, the value returned is  

Throws: 
RGMAException - if an RGMA access error occurs 

 getMetaData() 
public rgma.ResultSetMetaData getMetaData() 

throws RGMAException 

Retrieves the number, types and properties of this ResultSet object’s columns. 

Returns: 
the description of this ResultSet object’s columns 

Throws: 
RGMAException - if an RGMA access error occurs 



 

 
 DRAFT 81 / 132
 

 getReal(int) 
public double getReal(int columnIndex) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
a double in the Java programming language. 

Parameters: 
columnIndex - the first column is 1, the second is 2, ... 

Returns: 
the column value; if the value is SQL NULL, the value returned is  

Throws: 
RGMAException - if an RGMA access error occurs 

getReal(String) 
public double getReal(String columnName) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
a double in the Java programming language. 

Parameters: 
columnName - the SQL name of the column 

Returns: 
the column value; if the value is SQL NULL, the value returned is  

Throws: 
RGMAException - if an RGMA access error occurs 

 getRow() 
public int getRow() 

throws RGMAException 

Retrieves the current row number. The first row is number 1, the second number 2, and so on. 

Returns: 
the current row number;  if there is no current row 

Throws: 
RGMAException - if an RGMA access error occurs 

 getString(int) 
public String getString(int columnIndex) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
a String in the Java programming language. 

Parameters: 
columnIndex - the first column is 1, the second is 2, ... 

Returns: 
the column value; if the value is SQL NULL, the value returned is null 



 

 
 DRAFT 82 / 132
 

Throws: 
RGMAException - if an RGMA access error occurs 

getString(String) 
public String getString(String columnName) 

throws RGMAException 

Retrieves the value of the designated column in the current row of this ResultSet object as 
a String in the Java programming language. 

Parameters: 
columnName - the SQL name of the column 

Returns: 
the column value; if the value is SQL NULL, the value returned is null 

Throws: 
RGMAException - if an RGMA access error occurs 

 isAfterLast() 
public boolean isAfterLast() 

throws RGMAException 

Retrieves whether the cursor is after the last row in this ResultSet object. 

Returns: 
true if the cursor is after the last row; false if the cursor is at any other position or the 
result set contains no rows 

Throws: 
RGMAException - if an RGMA access error occurs 

 isBeforeFirst() 
public boolean isBeforeFirst() 

throws RGMAException 

Retrieves whether the cursor is before the first row in this ResultSet object. 

Returns: 
true if the cursor is before the first row; false if the cursor is at any other position or 
the result set contains no rows 

Throws: 
RGMAException - if an RGMA access error occurs 

isFirst() 
public boolean isFirst() 

throws RGMAException 

Retrieves whether the cursor is on the first row of this ResultSet object. 

Returns: 
true if the cursor is on the first row; false otherwise 

Throws: 
RGMAException - if an RGMA access error occurs 



 

 
 DRAFT 83 / 132
 

 isLast() 
public boolean isLast() 

throws RGMAException 

Retrieves whether the cursor is on the last row of this ResultSet object. Note: Calling the 
method isLast may be expensive because the JDBC driver might need to fetch ahead one 
row in order to determine whether the current row is the last row in the result set. 

Returns: 
true if the cursor is on the last row; false otherwise 

Throws: 
RGMAException - if an RGMA access error occurs 

 last() 
public boolean last() 

throws RGMAException 

Moves the cursor to the last row in this ResultSet object. 

Returns: 
true if the cursor is on a valid row; false if there are no rows in the result set 

Throws: 
RGMAException - if an RGMA access error occurs or the result set type 
isTYPE_FORWARD_ONLY 

next() 
public boolean next() 

throws RGMAException 

Moves the cursor down one row from its current position. A ResultSet cursor is initially 
positioned before the first row; the first call to the method next makes the first row the 
current row; the second call makes the second row the current row, and so on.  
If an input stream is open for the current row, a call to the method next will implicitly close 
it. A ResultSet object’s warning chain is cleared when a new row is read.  

Returns: 
true if the new current row is valid; false if there are no more rows 

Throws: 
RGMAException - if an RGMA access error occurs 

 previous() 
public boolean previous() 

throws RGMAException 

Moves the cursor to the previous row in this ResultSet object. 

Returns: 
true if the cursor is on a valid row; false if it is off the result set 

Throws: 
RGMAException - if an RGMA access error occurs or the result set type 
isTYPE_FORWARD_ONLY 



 

 
 DRAFT 84 / 132
 

 wasNull() 
public boolean wasNull() 

throws RGMAException 

Reports whether the last column read had a value of SQL NULL. Note that you must first call 
one of the getter methods on a column to try to read its value and then call the method 
wasNull to see if the value read was SQL NULL. 

Returns: 
true if the last column value read was SQL NULL and false otherwise 

Throws: 
RGMAException - if an RGMA access error occurs 



 

 
 DRAFT 85 / 132
 

rgma 

 ResultSetMetaData 

Declaration 
public class ResultSetMetaData 
  
rgma.ResultSetMetaData 

Description 
Column and table details for a ResultSet, modelled on java.sql.ResultSetMetaData. 

Member Summary 

Constructors 
 ResultSetMetaData() 

Methods 
 int getColumnCount()

 

Returns the number of columns in this ResultSet object. 

 String getColumnName(int column)
 

Get the designated column’s name. 

 int getColumnType(int column)
 

Retrieves the designated column’s SQL type. 

 String getColumnTypeName(int column)
 

Retrieves the designated column’s database-specific type name. 

 String getTableName(int column)
 

Gets the designated column’s table name. 

 
 

Constructors 

ResultSetMetaData() 
public ResultSetMetaData() 

Methods 

 getColumnCount() 
public int getColumnCount() 

throws RGMAException 

Returns the number of columns in this ResultSet object. 

Returns: 
the number of columns 



 

 
 DRAFT 86 / 132
 

Throws: 
RGMAException - if an RGMA access error occurs 

 getColumnName(int) 
public String getColumnName(int column) 

throws RGMAException 

Get the designated column’s name. 

Parameters: 
column - the first column is 1, the second is 2, ... 

Returns: 
column name 

Throws: 
RGMAException - if an RGMA access error occurs 

getColumnType(int) 
public int getColumnType(int column) 

throws RGMAException 

Retrieves the designated column’s SQL type. 

Parameters: 
column - the first column is 1, the second is 2, ... 

Returns: 
SQL type from rgma.Types 

Throws: 
RGMAException - if an RGMA access error occurs 

See Also: 
Types 

 getColumnTypeName(int) 
public String getColumnTypeName(int column) 

throws RGMAException 

Retrieves the designated column’s database-specific type name. 

Parameters: 
column - the first column is 1, the second is 2, ... 

Returns: 
type name used by the database. If the column type is a user-defined type, then a fully-
qualified type name is returned. 

Throws: 
RGMAException - if an RGMA access error occurs 

getTableName(int) 
public String getTableName(int column) 

throws RGMAException 



 

 
 DRAFT 87 / 132
 

Gets the designated column’s table name. 

Parameters: 
column - the first column is 1, the second is 2, ... 

Returns: 
table name or “” if not applicable 

Throws: 
RGMAException - if an RGMA access error occurs 



 

 
 DRAFT 88 / 132
 

rgma 

 RGMAException 

Declaration 
public class RGMAException 
  
rgma.RGMAException 

Description 
Exception thrown when an error occurs in the RGMA application. 
 

Member Summary 

Constructors 
 RGMAException(int errNo)

 

Creates a new RGMAException object. 

 RGMAException(int errNo, String message)
 

Creates a new RGMAException object. 

Methods 
 int getErrorNumber()

 

Gets the error number associated with this exception. 

 
 

Constructors 

RGMAException(int) 
public RGMAException(int errNo) 

Creates a new RGMAException object. 

Parameters: 
errNo - Error number 

 RGMAException(int, String) 
public RGMAException(int errNo, String message) 

Creates a new RGMAException object. 

Parameters: 
message - Error message 
errNo - Error number 



 

 
 DRAFT 89 / 132
 

Methods 

 getErrorNumber() 
public int getErrorNumber() 

Gets the error number associated with this exception. 

Returns: 
An error number. 



 

 
 DRAFT 90 / 132
 

rgma 

SelectStatement 

Declaration 
public class SelectStatement extends SQLStatement 

  
rgma.SQLStatement 

   | 
   +--rgma.SelectStatement 

Description 
An SQL SELECT statement. 

Member Summary 

Constructors 
 SelectStatement(String selectStatement)

 

Constructs a SelectStatement from an SQL SELECT statement string. 

 

Inherited Member Summary 

Methods inherited from class SQLStatement 

getStatement() 

 

Constructors 

 SelectStatement(String) 
public SelectStatement(String selectStatement) 

Constructs a SelectStatement from an SQL SELECT statement string. 

Parameters: 
selectStatement - An SQL SELECT statement. 



 

 
 DRAFT 91 / 132
 

rgma 

SQLStatement 

Declaration 
public class SQLStatement 
  
rgma.SQLStatement 

Direct Known Subclasses: 
CreateTableStatement, InsertStatement, Predicate, SelectStatement 

Description 
A generic SQL statement. 

Member Summary 

Constructors 
 SQLStatement(String statement)

 

Creates a new SQLStatement object. 

Methods 
 String getStatement()

 

Gets the SQL statement as a String. 

 
 

Constructors 

 SQLStatement(String) 
public SQLStatement(String statement) 

Creates a new SQLStatement object. 

Parameters: 
statement - An SQL statement 

Methods 

 getStatement() 
public String getStatement() 

Gets the SQL statement as a String. 

Returns: 
The SQL statement as a String. 



 

 
 DRAFT 92 / 132
 

rgma 

StorageLocation 

Declaration 
public class StorageLocation 
  
rgma.StorageLocation 

Description 
The location where tuples will be stored. There are three options:  

• MEMORY: StorageLocation.MEMORY  
• default DATABASE: StorageLocation.DATABASE  
• specific DATABASE: new StorageLocation(url, user, password)  

Member Summary 

Fields 
static StorageLocation DATABASE

 

The default DATABASE storage location. 

static StorageLocation MEMORY
 

The default MEMORY storage location. 

Constructors 
 StorageLocation(String url, String userName, String password)

 

Creates a new DATABASE StorageLocation object. 

Methods 
 boolean equals(StorageLocation p_storageLocation)

 

Compares this StorageLocation to the specified location. 

 String getPassword()
 

Gets the password for this storage system. 

 String getUrl()
 

Gets the URL for this storage system. 

 String getUserName()
 

Gets the user name for this storage system. 

 boolean hasDetails()
 

Determines if this StorageLocation contains storage details. 

 boolean isDatabase()
 

Determines the type of storage system. 

 boolean isMemory()
 

Determines the type of storage system. 

 
 



 

 
 DRAFT 93 / 132
 

Fields 

 DATABASE 
public static final rgma.StorageLocation DATABASE 

The default DATABASE storage location. 

 MEMORY 
public static final rgma.StorageLocation MEMORY 

The default MEMORY storage location. 

Constructors 

 StorageLocation(String, String, String) 
public StorageLocation(String url, String userName, String password) 

Creates a new DATABASE StorageLocation object. 

Parameters: 
url - The URL of the storage system (e.g. dbms) 
userName - The user name for the storage system. 
password - The password for the storage system. 

Methods 

equals(StorageLocation) 
public boolean equals(rgma.StorageLocation p_storageLocation) 

Compares this StorageLocation to the specified location. 

Parameters: 
p_storageLocation - Another StorageLocation object. 

Returns: 
true if the specified location is identical to this location. 

 getPassword() 
public String getPassword() 

Gets the password for this storage system. 

Returns: 
Password as a String 

 getUrl() 
public String getUrl() 

Gets the URL for this storage system. 

Returns: 



 

 
 DRAFT 94 / 132
 

URL as a String 

 getUserName() 
public String getUserName() 

Gets the user name for this storage system. 

Returns: 
User name as a String 

hasDetails() 
public boolean hasDetails() 

Determines if this StorageLocation contains storage details. 

Returns: 
true if it has storage details, otherwise false. 

 isDatabase() 
public boolean isDatabase() 

Determines the type of storage system. 

Returns: 
True if the storage system is a database 

 isMemory() 
public boolean isMemory() 

Determines the type of storage system. 

Returns: 
True if the storage system is memory 



 

 
 DRAFT 95 / 132
 

rgma 

 StringList 

Declaration 
public class StringList 
  
rgma.StringList 

Description 
A list of String objects. 

Member Summary 

Constructors 
 StringList()

 

Creates a new StringList object. 

Methods 
 void addString(int index, String string)

 

Add a String at the specified index. 

 void addString(String string)
 

Add a String. 

 String getString(int index)
 

Retrieves the String with the specified index. 

 int size()
 

Returns the size of the list. 

 
 

Constructors 

StringList() 
public StringList() 

Creates a new StringList object. 

Methods 

 addString(int, String) 
public void addString(int index, String string) 

Add a String at the specified index. 

Parameters: 
index - Index in list. 



 

 
 DRAFT 96 / 132
 

string - String to add. 

 addString(String) 
public void addString(String string) 

Add a String. 

Parameters: 
string - String to add. 

 getString(int) 
public String getString(int index) 

Retrieves the String with the specified index. 

Parameters: 
index - Index of String to get ( <= index < size) 

Returns: 
A String object. 

size() 
public int size() 

Returns the size of the list. 

Returns: 
The number of Strings in the list. 



 

 
 DRAFT 97 / 132
 

rgma 

 TableAuthorization 

Declaration 
public class TableAuthorization 
  
rgma.TableAuthorization 

Description 
Authorization rules for a table. 

Member Summary 

Constructors 
 TableAuthorization() 

Methods 
 void addRule(String rule)

 

Adds a rule to this TableAuthorization. 

 int getNumRules()
 

Gets the number of rules in this TableAuthorization. 

 String getRule(int ruleNum)
 

Gets the specified rule. 
 
 

Constructors 

 TableAuthorization() 
public TableAuthorization() 

Methods 

 addRule(String) 
public void addRule(String rule) 

Adds a rule to this TableAuthorization. A rule consists of a view on a table (a parameterized 
SELECT statement) and a set of allowed credentials specifying which users can access the 
view. 

Parameters: 
rule - An authorization rule. 



 

 
 DRAFT 98 / 132
 

 getNumRules() 
public int getNumRules() 

Gets the number of rules in this TableAuthorization. 

Returns: 
The number of rules. 

 getRule(int) 
public String getRule(int ruleNum) 

Gets the specified rule. 

Parameters: 
ruleNum - Number of the rule to retrieve. 

Returns: 
The specified rule. 



 

 
 DRAFT 99 / 132
 

rgma 

 TimeInterval 

Declaration 
public class TimeInterval 
  
rgma.TimeInterval 

Description 
Encapsulates a time value and the units being used. 

Member Summary 

Constructors 
 TimeInterval(long value, Units units)

 

Creates a new TimeInterval object. 

Methods 
 long getValueAs(Units units)

 

Gets the length of the time interval in the specified units. 

 
 

Constructors 

TimeInterval(long, Units) 
public TimeInterval(long value, rgma.Units units) 

Creates a new TimeInterval object. 

Parameters: 
value - The number of time units 
units - The time units: MS, SECONDS, MINUTES, HOURS, DAYS 

Methods 

 getValueAs(Units) 
public long getValueAs(rgma.Units units) 

Gets the length of the time interval in the specified units. 

Parameters: 
units - The time units: MS, SECONDS, MINUTES, HOURS, DAYS 

Returns: 
The time interval in the given units. 



 

 
 DRAFT 100 / 132
 

rgma 

 Types 

Declaration 
public class Types 
  
rgma.Types 

Description 
Constants for SQL column types. 
 

Member Summary 

Fields 
static int CHAR

 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type CHAR. 

static int DATE
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type DATE. 

static int INTEGER
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type INTEGER. 

static int NULL
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type NULL. 

static int REAL
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type REAL. 

static int TIME
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type TIME. 

static int VARCHAR
 

 The constant in the Java programming language, sometimes referred to as a type 
code, that identifies the generic SQL type VARCHAR. 

Constructors 
 Types() 

 
 

Fields 

CHAR 
public static final int CHAR 



 

 
 DRAFT 101 / 132
 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type CHAR.  

 DATE 
public static final int DATE 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type DATE.  

 INTEGER 
public static final int INTEGER 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type INTEGER.  

 NULL 
public static final int NULL 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type NULL.  

 REAL 
public static final int REAL 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type REAL.  

 TIME 
public static final int TIME 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type TIME.  

 VARCHAR 
public static final int VARCHAR 

 The constant in the Java programming language, sometimes referred to as a type code, that 
identifies the generic SQL type VARCHAR.  

Constructors 

Types() 
public Types() 



 

 
 DRAFT 102 / 132
 

rgma 

 Units 

Declaration 
public class Units 
  
rgma.Units 

Description 
Time units. 

Member Summary 

Fields 
static Units DAYS

 

Days. 

static Units HOURS
 

Hours. 

static Units MILLIS
 

Milliseconds (1/1000 S). 

static Units MINUTES
 

Minutes. 

static Units SECONDS
 

Seconds. 

Methods 
 boolean equals(Units units)

 

Compares this Units object with another. 

 
 

Fields 

 DAYS 
public static final rgma.Units DAYS 

Days. 

 HOURS 
public static final rgma.Units HOURS 

Hours. 

 MILLIS 
public static final rgma.Units MILLIS 



 

 
 DRAFT 103 / 132
 

Milliseconds (1/1000 S). 

 MINUTES 
public static final rgma.Units MINUTES 

Minutes. 

SECONDS 
public static final rgma.Units SECONDS 

Seconds. 

Methods 

 equals(Units) 
public boolean equals(rgma.Units units) 

Compares this Units object with another. 

Parameters: 
units - The other Units object. 

Returns: 
True if they represent the same units. 



 

 
 DRAFT 104 / 132
 

rgma 

 UnknownResourceException 

Declaration 
public class UnknownResourceException 
  
rgma.UnknownResourceException 

Description 
Exception thrown when a resource cannot be found in the resource framework. 

Member Summary 

Constructors 
 UnknownResourceException(String message)

 

Constructs an UnknownResourceException object. 

 
 

Constructors 

UnknownResourceException(String) 
public UnknownResourceException(String message) 

Constructs an UnknownResourceException object. 

Parameters: 
message - The error message. 

 



 

 
 DRAFT 105 / 132
 

rgma 

 Predicate 

Declaration 
public class Predicate extends SQLStatement 

  
rgma.SQLStatement 

   | 
   +--rgma.Predicate 

Description 
An SQL WHERE clause. 
 

Member Summary 

Constructors 
 Predicate()

 

Creates a new empty Predicate. 

 Predicate(String predicate)
 

Creates a new Predicate from a String of SQL. 

 

Inherited Member Summary 

Methods inherited from class SQLStatement 

getStatement() 

 

Constructors 

Predicate() 
public Predicate() 

Creates a new empty Predicate. 

 Predicate(String) 
public Predicate(String predicate) 

Creates a new Predicate from a String of SQL. 

Parameters: 
predicate - An SQL WHERE clause as a String. 



 

 
 DRAFT 106 / 132
 

 

 



 

 
 DRAFT 107 / 132
 

Computing Element 
 
Data Types (also used in WMS) 
GRID_Job_Description  -  JDL/ClassAd of the job, both at 

submission time (CondorG submit file) and 
after match/optimisation. 

GRID_Job_TQ_ID   - Unique ID obtained at submission time, 
and used to identify the job in the TQ. 
Would be equivalent to the AliEn TaskQueue 
Job Id and to the current EDG Job ID.  

GRID_Job_CE_ID       - Job ID used within the 'CE'. Would be 
equivalent to the current Alien QueueId, and 
to the CondorG job ID for EDG. 

GRID_Oper_Status     - Generic error description. 

GRID_Job_Info      - Set of 'useful' information about *one* job. 
Should contain be a combination of what AliEn 
'top' and 'ps' return, of what is found in a 
line of the AliEn TaskQueue database, and iof 
what EDG get_status and get_logging_info 
return.  

GRID_Job_Status   - Some sort of enum (used in GRID_Job_Info) 
describing the possible states of a job. 
Purely as food for thought, here's the current 
possible states for AliEn, EDG, Condor: 

 

         AliEn: 

                     WAITING, ASSIGNED, QUEUED, INSERTING, RUNNING, 
EXPIRED, ERROR_S, ERROR_E, ERROR_A, ERROR_V, KILLED, DONE, IDLE, 
INTERACTIV, FAULTY 

 

         EDG (from the JobStatus object): 

enum Code { 

 UNDEF = 0,      /**< indicates invalid, i.e. uninitialized instance 
*/ 

 SUBMITTED,   /**< entered by the user to the User Interface or 
registered by Job Partitioner */ 

 WAITING,      /**< Accepted by WMS, waiting for resource allocation 
*/ 

 READY,  /**< Matching resources found */ 

 SCHEDULED,      /**< Accepted by LRMS queue */ 

 RUNNING,        /**< Executable is running */ 

 DONE,   /**< Execution finished, output is available */ 

 CLEARED,        /**< Output transfered back to user and freed */ 

 ABORTED,        /**< Aborted by system (at any stage) */ 

 CANCELLED,      /**< Cancelled by user */ 



 

 
 DRAFT 108 / 132
 

 UNKNOWN,        /**< Status cannot be determined */ 

 PURGED, /**< Job has been purged from bookkeeping server (for LB-
>RGMA interface) */ 

 CODE_MAX 

}; 

 

          Condor: 

 char    *JobStatusNames[] = { 

                             "UNEXPANDED", 

                             "IDLE", 

                             "RUNNING", 

                             "REMOVED", 

                             "COMPLETED", 

                             "HELD", 

                             "SUBMISSION_ERR", 

                          }; 

 
API: 
   GRID_Oper_Status SubmitJob(GRID_Job_Description jdl, GRID_Job_CE_ID *id); 
   Transfer job control to CE. 
 
   GRID_Oper_Status CancelJob(GRID_Job_CE_ID id); 
   Remove job from CE. 
 
   GRID_Oper_Status JobStatus(GRID_Job_CE_ID id, GRID_Job_Info *jobinfo); 
   Get current status information. 
 



 

 
 DRAFT 109 / 132
 

Workload Management 
 
Note: job hold/resume and job signal functionality is at the moment left out. 
 
   GRID_Oper_Status InsertJob(GRID_Job_Description jdl, GRID_Job_TQ_ID *jobid);  
   Insert job into TQ. 
 
   GRID_Oper_Status RemoveJob(GRID_Job_TQ_ID jobid); 
   Delete job from TQ (and CE if necessary). 
 
   GRID_Oper_Status JobStatus(GRID_Job_TQ_ID jobid, GRID_Job_Info *jobinfo); 
   Get current status information. 
 
   GRID_Oper_Status GetJdl(GRID_Job_TQ_ID jobid, GRID_Job_Description *jdl); 
   Obtain current job JDL. 
 
   GRID_Oper_Status SetJdl(GRID_Job_TQ_ID jobid, GRID_Job_Description jdl); 
   Replace job JDL in TQ. 

 



 

 
 DRAFT 110 / 132
 

Storage Element 
 

Name grid_filedesc_init 
Synopsis Initialize a grid file descriptor 
Fields grid_filedesc_t 

*fd 
File descriptor to initialize. 

Errors GRID_ENULL The descriptor has not been allocated yet. 
Notes This has no correspondence in AliEn or EDG. The structure is used to store 

security information about the user, and session information for the Grid 
services.  

  

Type 
Name 

grid_filedesc_t 

Def typedef struct [to be detailed] 

Notes The file descriptor is a structure containing the necessary information to be 
able to carry out the file operations described below. Information like the 
user’s credentials, the current position in the file and buffering information 
will be part of it. 

 

Name grid_open 
Synopsis Open a grid file 

char* path Full logical file path of the file to open 
int flags The open flags. Accepted are: 

GRID_O_RDONLY Request file for read only. 
GRID_O_WRONLY Request file for write only. 
GRID_O_APPEND For write, don’t overwrite but 

append to file 

GRID_O_CREAT For write, if file does not 
exist, don’t come back with an 
error but create the file. 

GRID_O_EXCL If the file exists, when used 
with GRID_O_CREAT, an 
error will be returned. 

Fields 

grid_filedesc_t 
*fd 

The file descriptor being filled in. 

GRID_ENULL The file handle structure being passed in is not 
initialized. 

Errors 

GRID_ENEXIST Returned on read: there is no such entry in the 
file catalog. 



 

 
 DRAFT 111 / 132
 

GRID_EUNKNOWNSURL The SURL which is in the catalog is not 
recognized by the SE. This is an inconsistency 
between the catalog and the actual data on the 
SE. 

GRID_EACCES The user is not allowed to do read/write to the 
path. 

GRID_ENAMETOOLONG The pathname is too long. 
GRID_EISDIR The pathname refers to a directory and not to a 

file. 
GRID_ENOTDIR A pathname component is in fact not a 

directory. 
GRID_ENOENT A pathname component (parent) does not exist. 

 

GRID_EEXIST The pathname already exists and 
GRID_O_CREAT and GRID_O_EXCL were 
used. 

 GRID_EDENIED  The user is not allowed to unregister. 
Notes This corresponds to the open() call in AliEn and has no direct 

corresponding call in EDG, where this was done in a combination of 
replica manager/broker info (lookup of LFN) and system setup (NFS 
mount).  
Note also that for the time being there is no read-write mode. This is due to 
the distributed nature of the system and a simplification in semantics, taken 
from AliEn. 

 

Name grid_close 
Synopsis Open a grid file 
Fields grid_filedesc_t 

*fd 
File descriptor to close. 

Errors GRID_EBADF Not a valid file descriptor. 
Notes This corresponds to the close() call in AliEn and has no direct 

corresponding call in EDG.  
 

Name grid_read 
Synopsis Read from a grid file. Reads are sequential. 

grid_filedesc_t 
*fd 

File descriptor. The file has to be opened for 
read. 

Fields 

const void* buf The buffer to be read to. 

 size_t count The amount of bytes to be read. 

 size_t *count The amount of bytes actually read. 

Errors GRID_EBADF Not a valid file descriptor. 



 

 
 DRAFT 112 / 132
 

 GRID_EINVAL The file descriptor given is attached to a file 
that cannot be written. 

 GRID_EPIPE While writing, the connection to the service 
hosting the file was lost. 

Notes This corresponds to the read() call in AliEn and has no direct 
corresponding call in EDG.  

 

Name grid_write 
Synopsis Write into a grid file. Writes are sequential. 

grid_filedesc_t 
*fd 

File descriptor. The file has to be opened for 
write. 

const void* buf The buffer to be written. 
size_t count The amount of bytes to be written. 

Fields 

size_t *count The amount of bytes actually written. 
GRID_EBADF Not a valid file descriptor. Errors 
GRID_EINVAL The file descriptor given is attached to a file 

that cannot be written. 
 GRID_EPIPE While writing, the connection to the service 

hosting the file was lost. 
Notes This corresponds to the write() call in AliEn and has no direct 

corresponding call in EDG.  

 

Name grid_fseek 
Synopsis Position the read stream. Does not work for writes, works only forward for 

reads. 
grid_filedesc_t 
*fd 

File descriptor. The file has to be opened for 
read. 

Fields 

size_t count The amount of bytes to skipped. 
GRID_EBADF Not a valid file descriptor. Errors 
GRID_EINVAL The file descriptor given is attached to a file 

that cannot be read (ie file has been opened for 
write). 

 GRID_EPIPE While seeking the connection to the service 
hosting the file was lost. 

Notes This has no corresponding call in AliEn and has no direct corresponding 
call in EDG.  

 

Name grid_stat 
Synopsis Return the status of a grid file based on its logical file name. 



 

 
 DRAFT 113 / 132
 

char *filename File descriptor. The file has to be opened for 
write. 

Fields 

struct 
grid_fstat_t* 
statbuf 

The filestat structure to be filled. It is described 
below. 

GRID_ENEXIST There is no such entry in the file catalog. 
GRID_EACCES The user is not allowed to do read this 

information. 
GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOTDIR A pathname component is in fact not a 

directory. 

Errors 

GRID_ENOENT A pathname component (parent) does not exist. 
Notes This corresponds to the stat() call in AliEn and has no direct corresponding 

call in EDG.  

 

Type 
Name 

grid_fstat_t 

Def typedef struct [to be detailed] 

Notes The fstat structure will contain the detailed information about a grid file, 
like its GUID, its ACL, size and modification dates. 

 

Note: All of the file system commands manipulating directories are described under the File 
Catalog component. 

 



 

 
 DRAFT 114 / 132
 

File Transfer Service 
 

Name grid_schedule_transfer 
Synopsis Put a new transfer request on the file transfer queue. This is a nonblocking 

call. 
char * sourceURL The source file name. This needs to be a 

valid SURL recognized by an SE or a http, 
ftp or gsiftp URL. 

char * destURL The destination file name. This also is a 
SURL recognized by an SE or a ftp or gsiftp 
URL. 

Fields 

grid_stid_t *id The scheduled transfer id returned. 
GRID_EBADSURL Not a valid SURL for either source or dest. Errors 
GRID_EACCESS The user is not allowed to write / read the 

file. 
Notes  

 

Name grid_cancel_transfer 
Synopsis Cancel a transfer request. This will simply remove an entry from the queue. 

If the transfer is already in progress, this has no effect. 
Fields grid_stid_t id The transfer id to be cancelled. 

GRID_EBADTRANSID Not a valid transfer id (anymore). Errors 
GRID_EACCESS The user is not allowed to cancel the transfer.

Notes  

 

Name grid_transfer_status 
Synopsis Show the status of the transfer. 

grid_stid_t id The transfer id to listed. Fields 
int *stat The status. It can be GRID_ST_PENDING, 

GRID_ST_TRANSFERRING, 
GRID_ST_CANCELLED, 
GRID_ST_DONE. 

GRID_EBADTRANSID Not a valid transfer id. Errors 
GRID_EACCESS The user is not allowed to read the status. 

Notes  

 
 
 



 

 
 DRAFT 115 / 132
 

Name grid_transfer_list 
Synopsis Show the list of scheduled transfers. Only those transfers are listed that the 

user is allowed to see. This call can be called repeatedly to get the next 
entry from the stream. It will return GRID_EEOF if there are no more 
entries left to list. 
grid_stid_t *id The transfer id of the entry.  
char *source The source to be transferred from. This is a 

buffer which should be allocated by the user 
before calling the method. 

char *dest The destination to transfer to. This is also a 
buffer, just like source. 

Fields 

Int *stat The status. It can be GRID_ST_PENDING, 
GRID_ST_TRANSFERRING, 
GRID_ST_CANCELLED, 
GRID_ST_DONE. 

GRID_EOF This is not really an error, it indicates that 
there are no more entries to be retrieved. The 
source and dest buffers and id, stat fields are 
unchanged if EOF is reached. 

GRID_ERANGE The source or dest buffer is not big enough to 
store the entry. There is a field 
GRID_NAME_MAX that defines the maximal 
name length. 

Errors 

GRID_EACCESS The user is not allowed to list the status. 
Notes  

 



 

 
 DRAFT 116 / 132
 

File Placement Service 
 
  

Name grid_create_replica 
Synopsis Create a replica at a given location. This will submit and monitor a file 

transfer to the file transfer service and update the file catalog accordingly 
upon successful replication. This is a blocking call until a replication and 
registration is complete. 
char *path The full logical file name path of the file of 

which a new replica is to be created. 
Fields 

char* destination The destination to replicat to. This can be a 
fully qualified SURL or just the SE to 
replicate to. 

GRID_EEXIST There is already a replica at the given 
destination. 

GRID_ENEXIST The path does not exist in the catalog. 
GRID_EACCESS The user is not allowed to create a new 

replica at the given destination. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes The source to replicate from will be chosen by the service. Trivially it will choose 
a file from the local store if one is available, otherwise it chooses one at random. 
This corresponds to the createMirror call in AliEn and the replica manager 
replicateFile command in EDG. In EDG the source was chosen based on some 
networking monitoring metrics. 

 

Name grid_put_file 
Synopsis Put a new file into the grid explicitly. The source file can exist either on the 

local file system or is accessible through one of the http, ftp, gsiftp 
protocols. This is a blocking call for local files and nonblocking for other 
files where the transfer service will be used to perform the put. This call 
also has a bulk operation corresponding call, grid_bulk_put_file. 
char *path The full logical file name path of the file that 

should exist from now on in the grid. 
Fields 

char *sourceURL The source URL. This has to be a valid url 
with schema file, http, ftp, gsiftp. 

 char *destSURL This is optional and can be left NULL, in 
which case the service will choose a name to 
put the file to on the local SE. Otherwise it 
tries to create the file using the given SURL.  



 

 
 DRAFT 117 / 132
 

GRID_EEXIST There is already a file in the catalog with the 
given path. 

GRID_ENEXIST The source does not exist or is not accessible.
GRID_EACCESS The user is not allowed to create a new file in 

the given path or the given destSURL. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

 GRID_EINVSURL The SURL for destination given is invalid 
 GRID_ESURLEXIST The dest SURL already exists on the SE 
Notes This corresponds to the copyAndRegister call in the EDG replica catalog. 

 

Name grid_bulk_put_file 
Synopsis Put a set of new files into the grid. The set of files is defined in the XML 

string. It may contain also metadata that is to be added to each file as well 
as ACLs.  
char *xml The XML string specifying the files and all 

attributes thereof to be put. [to be detailed] 
int policy Flags to specify the failure policy. The 

options are: 
GRID_FAIL_ANY Fail for all if any of the 
files cannot be created. 
GRID_FAIL_ALL Fail only if none of the 
files can be put. The result string will contain 
eventual individual failures. 

Fields 

char *resultXML Report on the bulk operation. This is also an 
XML string, containing the pathnames and 
individual return codes. The return codes are 
listed below. 

GRID_EEXIST There is already a file in the catalog with the 
given path. 

GRID_ENEXIST The source does not exist or is not accessible.
GRID_EACCESS The user is not allowed to create a new file in 

the given path or the given destSURL. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

 GRID_EINVSURL The SURL for destination given is invalid 
 GRID_ESURLEXIST The dest SURL already exists on the SE 
Notes This corresponds to the bulkCopyAndRegister call in the EDG replica catalog. It 

is first checked whether the user has the right to create all logical names in the 
catalog before starting the copy operations through the file transfer service. 



 

 
 DRAFT 118 / 132
 

 

Name grid_delete_replica 
Synopsis Remove a replica from a given location. This will submit a removal request 

to the SE and remove the entry from the catalog. 
char *path The full logical file name path of the file of 

which a replica is to be removed. 
Fields 

char* replica The replica to remove. This can be a fully 
qualified SURL or just the SE to remove 
from. 

GRID_ENEXIST There is no such path in the catalog. 
GRID_EINVAL There is no such replica to delete. 
GRID_EACCESS The user is not allowed to create a new 

replica at the given destination. 
GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOENT A pathname component (parent) does not 

exist. 
GRID_EINVSURL The SURL is invalid. 

Errors 

GRID_EFAIL The SURL could not be removed from the 
SE. This occurs if there is an inconsistency 
between the catalog and the SE. The catalog 
entry is removed! 

Notes It is first checked whether the user is allowed to perform the operation on the 
given SURL. The entry is removed from the catalog first, and only if that 
operation is successful will a removal request be made at the SE (which should 
not but can fail with GRID_EFAIL). If this was the last replica in the catalog, the 
logical entry is being kept, but it will have no actual replicas associated with it and 
the file size is reset to 0. 

 
 



 

 
 DRAFT 119 / 132
 

File and Replica Catalog 
 
 
Basic types 
C data types were chosen for interface definitions but with the underlying assumption that all 
of them could be mapped to XMLSchema 1.0 types as defined in 
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes, including complex structures 
obeying this standard.  
Logical directory methods 
These methods enable interaction with the logical namespace of the catalog. 

Name grid_readdir 
Synopsis Return the next entry in the directory stream. 

char* 
directory 

Directory to list Fields 

char* buf Buffer to place next entry in.  
GRID_EBADF Not a valid directory 
GRID_EOF This is not really an error, it indicates that there 

are no more entries to be retrieved or that the 
directory is empty. The buffer is unchanged if 
EOF is reached. 

Errors 

GRID_ERANGE The buffer is not big enough to store the entry. 
There is a field GRID_NAME_MAX that defines 
the maximal name length. 

Notes The behavior is similar but not identical to the posix readdir system call. 
This corresponds to the readdir() call in AliEn and has no correspondent 
in EDG.  

 

Name grid_mkdir 
Synopsis Create a new logical directory. 
Fields char* directory Full path of the directory to create 

GRID_EEXIST There is already an entry in the catalog with 
this name (either file or directory) 

GRID_EACCES The parent directory does not allow the user 
to create a directory (see posix acl 
semantics below) 

GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes This corresponds to the MkDir() call in AliEn and has no correspondent 
in EDG.  

 



 

 
 DRAFT 120 / 132
 

Name grid_rmdir 
Synopsis Delete a logical directory. 
Fields char* directory Full path of the directory to delete 

GRID_EEXIST There is already an entry in the catalog with 
this name (either file or directory) 

GRID_EACCES The parent directory does not allow the user 
to remove a directory or directory not 
readable (see posix acl semantics below) 

GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOENT A pathname component (parent) does not 

exist. 
GRID_ENOTEMPTY The directory is not empty 

Errors 

GRID_ENOTDIR The path is actually not a directory 
Notes This corresponds to the RmDir() call in AliEn and has no correspondent 

in EDG.  
 
Virtual directory methods 
 

Name grid_mkvdir 
Synopsis Create a new virtual directory. 

char* directory Full path of the directory to create Fields 
char* queryXML The XML which defines the query and the 

query and directory metadata. It contains 
the directives for example about the 
maximal cardinality of the result, eventual 
offset, etc. 

GRID_EEXIST There is already an entry in the catalog with 
this name (either file or directory) 

GRID_EACCES The parent directory does not allow the user 
to create a directory (see posix acl 
semantics below) 

GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

 GRID_EBADQUERY The query has failed to create the virtual 
directory. 

Notes This has no corresponding call in AliEn or EDG.  
 

Name grid_vdir_refresh 
Synopsis Refresh a virtual directory. 



 

 
 DRAFT 121 / 132
 

Fields char* directory Full path of the directory to refresh. 
GRID_ENEXIST There is no such entry in the catalog. 
GRID_EACCES The user is not allowed to refresh the virtual 

directory. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

 GRID_EBADQUERY The query has failed to update the virtual 
directory. 

Notes There is no corresponding call in AliEn or EDG.  
 

Name grid_rmvdir 
Synopsis Remove a virtual directory. 
Fields char* directory Full path of the directory to remove. 

GRID_ENEXIST There is no such entry in the catalog. 
GRID_EACCES The user is not allowed to remove the 

virtual directory. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes There is no corresponding call in AliEn or EDG.  
 
 
Security methods 
[to be completed in detail, including structures] 
grid_acl_set_file  
grid_acl_get_file 
 
grid_acl_copy_entry, grid_acl_create_entry, grid_acl_delete_entry, 
grid_acl_get_entry, grid_acl_valid 
 
grid_acl_add_perm, grid_acl_calc_mask, grid_acl_clear_perms, 
grid_acl_delete_perm, grid_acl_get_permset, grid_acl_set_permset 
 
grid_acl_get_qualifier, grid_acl_get_tag_type, grid_acl_set_qualifier, 
grid_acl_set_tag_type 
 
grid_acl_copy_entry, grid_acl_copy_ext, grid_acl_from_text, 
grid_acl_to_text, grid_acl_size 
 



 

 
 DRAFT 122 / 132
 

Logical files 

Name grid_create 
Synopsis Create a new logical file name entry without actual associated data. 
Fields char* path Full logical file path of the file to register 

GRID_EEXIST There is already an entry in the file catalog 
with this name 

GRID_EACCES The parent directory does not allow the user 
to write a new entry here. 

GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes This does not correspond to anything in AliEn or EDG. 
 

Name grid_delete 
Synopsis Delete logical file name entry. This will not remove the files from 

storage, use grid_delete_replica or grid_delete_all instead. This is 
purely a catalog operation. 

Fields char* path Full logical file path of the file to delete. 
GRID_ENEXIST There no such entry in the file catalog. 
GRID_EACCES The parent directory does not allow the user 

to delete. 
GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes  
 

Name grid_rename 
Synopsis Rename the logical file name. 

char* path Full logical file path of the file to rename Fields 
char* newpath Full logical file path of the new file name 
GRID_EEXIST There is already an entry in the file catalog 

with this name (new name) 
GRID_ENEXIST There is no such path in the catalog 

(existing name) 
GRID_EACCES The parent directory does not allow the user 

to remove the old entry or to write the new 
entry. 

GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 



 

 
 DRAFT 123 / 132
 

Notes  
 
Symbolic links 

Name grid_symlink 
Synopsis Create a symbolic link. 

char* path Full logical file path of the new file name 
(i.e. the symlink) 

Fields 

char* linkpath Full logical file path of existing file to link 
to 

GRID_EEXIST There is already an entry in the file catalog 
with this name (symlink path, first arg) 

GRID_ENEXIST There is no such path in the catalog 
(existing name to link to, second arg) 

GRID_EACCES The parent directory does not allow the user 
to write the entry. 

GRID_ENAMETOOLONG The pathname is too long. 

Errors 

GRID_ENOENT A pathname component (parent) does not 
exist. 

Notes  
 
Replica manipulation and entry creation 
These methods are all catalog-only methods and do not involve data movement. See above 
under ‘data management’ for the methods involving both registration and data movement. 
 

Name grid_register 
Synopsis Register a file which exists on a SE. 

char* path Full logical file path of the file to register Fields 
char* SURL The SURL of the  
GRID_EEXIST There is already an entry in the file catalog 

with this name 
GRID_EACCES The parent directory does not allow the user 

to write a new entry here. 
GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOENT A pathname component (parent) does not 

exist. 
GRID_EINVSURL The SURL given is invalid 
GRID_ESURLNEXIST The SURL does not exist on the SE 

Errors 

GRID_EDENIED The user is not allowed to register a new 
replica. 



 

 
 DRAFT 124 / 132
 

Notes This corresponds to the RegisterFile() call in AliEn and the replica 
manager registerFile method in EDG.  

 

Name grid_list_replicas 
Synopsis List all known replicas of a file. 

char* path Full logical file path of the file  Fields 
char* buf Buffer to place next SURL in.  
GRID_ENEXIST No such file. 
GRID_EOF This is not really an error, it indicates that there are 

no more entries to be retrieved. The buffer is 
unchanged if EOF is reached. 

GRID_ERANGE The buffer is not big enough to store the entry. 
There is a field GRID_NAME_MAX that defines the 
maximal name length. 

GRID_EACCES The user is not allowed to read the path. 
GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOENT A pathname component (parent) does not exist. 

Errors 

GRID_EDENIED The user is not allowed to list replicas. 
Notes This corresponds to the replica manager listReplicas method in EDG. It has 

similar semantic behavior as the grid_readdir command. 
 

Name grid_unregister 
Synopsis Un-register a file replica 

char* path Full logical file path of the file modify the 
registrations 

Fields 

char* SURL The SURL of the PFN to be unregistered. 
GRID_ENEXIST There is no such entry in the file catalog. 
GRID_EACCES The user is not allowed to do read the path. 
GRID_ENAMETOOLONG The pathname is too long. 
GRID_ENOENT A pathname component (parent) does not 

exist. 
GRID_EINVSURL The SURL given is invalid 

Errors 

GRID_EDENIED The user is not allowed to unregister. 
Notes This corresponds to no call in AliEn and the replica manager 

unregisterFile method in EDG. It does not remove the LFN. If the last 
entry has been removed, the LFN is still not removed, it simply has no 
replica. 

 
Sessions 



 

 
 DRAFT 125 / 132
 

The methods presented here run in a context of a session. This implies that for every call 
current directory is defined, as well as root directory.  
Many methods derive their options sets from Posix originals, many may support omnipresent 
grid options like asynchronous operation, publishing or others. [The details are up for 
discussion.] 
 
Definitions of some of these grid options follow pseudo EBNF notation: 
 
grid_option: 

grid_async_option  | 
publish_option | 
subscribe_option  
; 

 
async_option : 
 | 
 ASYNC_FLAG timout_option return_method action 

; 
 
publish_option: 
 | 
 PUBLISH_FLAG metadata_tags 

; 
 
subscribe_option: 
 | 
 SUBSCRIBE_FLAG metadata_tags 

;   
 

 
Action:  
 | 
 ACTION_FLAGs Method {call(Method(…)}; 
 
timout_option:  
{default}| 

NUMBER SCALE //when timeout occurs in SCALE units 
 ; 
 
return_method: 
{default acknowledgment} | 



 

 
 DRAFT 126 / 132
 

 EMAIL email_ops  | 
 QUEUE queueops | 
 FILECREATION filecreatops 
 ; //this also could be a list (mixture any of these) 
 
Most methods in the complex and basic category can be extended to include sessions. 
 
Complex methods 
The complex operations involve the operations that do more than just atomic calls to the 
catalog. They operate also not just on simple types but on the structures that we define below. 
The methods involving session handling also are in the category of complex operations. 
 
Methods involving metadata 
The metadata calls are routed through to the metadata API described below. 
 

API call Description 
grid_register_with_md Register a file with a set of metadata in one go 
grid_fc_add_tag Add a tag of a certain type to a given file 
grid_fc_remove_tag Remove the tag from the file 
grid_fc_show_tags Show tags and their type associated with a file. 
grid_fc_tag_exists Ask whether a tag exists for a given file 
grid_fc_set_tag_value Set the value of a given tag of a file 
grid_fc_get_tag_value Retrieve the value of a tag of a file 
grid_fc_list_files_by_tag List all files having a given value for a tag in a 

directory, with offset and number of results to return 
grid_fc_get_files_by_tag_search Find all files matching a tag query, starting from a 

given directory, with offset and number of results to 
return. 

 
Session-specific calls  
grid_cwdir 
grid_chdir 
grid_pwd 
 
Middleware-Domain API 
The job scheduler will need to know all available replicas (SURLs) based on a (set of) LFNs. 
This operation has to be very efficient and has to scale very well. 
[GUID-related calls – to be included] 
Structures 
[These need to be detailed] 
Name grid_session_t 
Synopsis: The main predefined user structure is used to store context of the 



 

 
 DRAFT 127 / 132
 

user session operations, like the current directory. By definition, 
this is a singleton object per user session. 
Used by external programs and users to store context of a user 
session. 
long sessionId Unique session ID 
string currentDirectory Context of the session. 
string homeDirectory Same as in u-space in unix 

Fields 

long sessionLifetime  End-of-session lifetime, sessions need 
to be able to time out upon client 
failures or idleness 

Notes Sessions are always tightly coupled with the user’s security 
object. 

 
Name grid_user_t 
Synopsis: The user’s identity object based on the credentials. 
optional string userDN The user’s distinguished name 
 string[] userRoles Roles the user has been associated with 
 long validityTime  
 long creationTime  
Notes:  
 
Name grid_file_t 
Synopsis: The main predefined user structure is used to store information on 

a file. 
Fields String LFN Full path of the file 
 ACL accessControl ACL of the file 
 long size File size 
 long creationTime Creation time of file 
 URI[] SURLlist List of replicas 
 URI GUID GUID of file 
 URI parent GUID of parent directory 
 FCMetadata md Metadata on file 
Notes: The fields do not need to be present or filled for some methods that 

only deal with simple lookups. There are specific methods that will 
fill in the fields of existing FCFile objects. 

 
Name grid_directory_t 
Synopsis: Specifies the nature of a directory. It can be a virtual directory or 

a ‘real’ logical directory. 
Fields string path Full path of directory 
 URI GUID GUID of directory 
 URI parent GUID of parent directory 



 

 
 DRAFT 128 / 132
 

 ACL accessControl The access control list of the directory 
 boolean virtual The virtual directory flag 
 string query Query string for virtual directories 
 long maxsize The maximal number of files in this 

directory 
 long creationTime Time when directory was created 
 long refreshTime Time when directory was last 

refreshed (query was rerun for virtual 
directories or last written to for logical 
directories) 

Notes:  
 
 
Name grid_metadata_t 
Synopsis All metadata associated with a catalogue entry as returned 

through the metadata interface.  
Fields long size Number of key-value pairs for the 

entry 
 URI GUID The GUID of the LFN this metadata 

belongs to 
 string metadata An XML string with all the metadata 

filled. 



 

 
 DRAFT 129 / 132
 

 

Posix ACLs 
The following is taken from the Posix ACL man pages. 

ACL Types 
Every object can be thought of as having associated with it an ACL that governs the 
discretionary access to that object; this ACL is referred to as an access ACL. In addition, a 
directory may have an associated ACL that governs the initial access ACL for objects created 
within that directory; this ACL is referred to as a default ACL. 
 

ACL Entries 
An ACL consists of a set of ACL entries. An ACL entry specifies the access permissions on 
the associated object for an individual user or a group of users as a combination of read, write 
and search/execute permissions. 
An ACL entry contains an entry tag type, an optional entry tag qualifier, and a set of 
permissions.  We use the term qualifier to denote the entry tag qualifier of an ACL entry. 
The qualifier denotes the identifier of a user or a group, for entries with tag types of 
GRID_ACL_USER or GRID_ACL_GROUP, respectively. Entries with tag types other than 
GRID_ACL_USER or GRID_ACL_GROUP have no defined qualifiers. The following entry 
tag types are defined: 
 
GRID_ACL_USER_OBJ The GRID_ACL_USER_OBJ entry denotes access rights for 

the file owner. 
GRID_ACL_USER GRID_ACL_USER entries denote access rights for 

users identified by the entry's qualifier. 
GRID_ACL_GROUP_OBJ The GRID_ACL_GROUP_OBJ entry denotes access rights 

for the file group. 
GRID_ACL_GROUP GRID_ACL_USER entries denote access rights for groups 

identified by the entry's qualifier. 
GRID_ACL_MASK The GRID_ACL_MASK entry denotes the maximum 

access rights that can be granted by entries of type 
GRID_ACL_USER, GRID_ACL_GROUP_OBJ, or 
GRID_ACL_GROUP. 

 GRID_ACL_OTHER The GRID_ACL_OTHER entry denotes access rights for 
processes that do not match any other entry in the ACL. 

 
When an access check is performed, the GRID_ACL_USER_OBJ and GRID_ACL_USER 
entries are tested against the effective user ID. The effective group ID, as well as all 
supplementary group IDs are tested against the GRID_ACL_GROUP_OBJ and 
GRID_ACL_GROUP entries. 
 

Valid ACLs 
A valid ACL contains exactly one entry with each of the GRID_ACL_USER_OBJ, 
GRID_ACL_GROUP_OBJ, and GRID_ACL_OTHER tag types. Entries with 



 

 
 DRAFT 130 / 132
 

GRID_ACL_USER and GRID_ACL_GROUP tag types may appear zero or more times in an 
ACL. An ACL that contains entries of GRID_ACL_USER or GRID_ACL_GROUP tag types 
must contain exactly one entry of the GRID_ACL_MASK tag type. If an ACL contains no 
entries of GRID_ACL_USER or GRID_ACL_GROUP tag types, the GRID_ACL_MASK 
entry is optional. 
All user ID qualifiers must be unique among all entries of GRID_ACL_USER tag      type, 
and all group IDs must be unique among all entries of GRID_ACL_GROUP tag type. 
The grid_acl_get_file() function returns an ACL with zero ACL entries as the default 
ACL of a directory, if the directory is not associated with a default ACL. The 
grid_acl_set_file() function also accepts an ACL with zero ACL entries as a valid 
default ACL for directories, denoting that the directory shall not be associated with a default 
ACL. This is equivalent to using the grid_acl_delete_def_file() function. 
 

Correspondence Between ACL Entries and File Permissions 
The permissions defined by ACLs are a superset of the permissions specified by the file 
permission bits. The permissions defined for the file owner correspond to the permissions of 
the GRID_ACL_USER_OBJ entry.  The permissions defined for the file group correspond to 
the permissions of the GRID_ACL_GROUP_OBJ entry, if the ACL has no 
GRID_ACL_MASK entry. If the ACL has an GRID_ACL_MASK entry, then the 
permissions defined for the file group correspond to the permissions of the 
GRID_ACL_MASK entry. The permissions defined for the other class correspond to the 
permissions of the GRID_ACL_OTHER_OBJ entry. 
Modification of the file permission bits results in the modification of the permissions in the 
associated ACL entries. Modification of the permissions in the ACL entries results in the 
modification of the file permission bits. 

Object Creation and Default ACLs 
The access ACL of a file object is initialized when the object is created with grid_mkdir(), 
grid_register(), grid_symlink() functions. If a default ACL is associated with a 
directory, the default ACL of the directory is used to determine the ACL of the new object, 
i.e. the new object inherits the default ACL of the containing directory as its access ACL. 
The new object is assigned an access ACL containing entries of tag types 
GRID_ACL_USER_OBJ, GRID_ACL_GROUP_OBJ, and GRID_ACL_MASK. The 
permissions of these entries are set to the permissions specified by the file creation mask. 

Access Check Algorithm 
A process may request read, write, or execute/search access to a file object protected by an 
ACL. The access check algorithm determines whether access to the object will be granted. 
 

1. If the effective user ID of the process matches the user ID of the file object owner, 
then if the GRID_ACL_USER_OBJ entry contains the requested permissions, access 
is granted, else access is denied. 

2. Else if the effective user ID of the process matches the qualifier of any entry of type 
GRID_ACL_USER, then if the matching GRID_ACL_USER entry and the 
GRID_ACL_MASK entry contain the requested permissions, access is granted, else 
access is denied.  



 

 
 DRAFT 131 / 132
 

3. Else if the effective group ID or any of the supplementary group IDs of the process 
match the qualifier of any entry of type GRID_ACL_GROUP, then if the 
GRID_ACL_MASK entry and any of the  matching  GRID_ACL_GROUP  group 
entries contain the requested permissions, access is granted, else access is denied. 

4. Else if the GRID_ACL_OTHER entry contains the requested permissions, access is 
granted. 

5. Else access is denied. 
 

Acl Text Forms 
A long and a short text form for representing ACLs is defined. In both forms, ACL entries are 
represented as three colon separated fields: an ACL entry tag type, an ACL entry qualifier, 
and the discretionary access permissions. The first field contains one of the following entry 
tag type keywords: 
user A user ACL entry specifies the access granted to either the file owner (entry tag 

type GRID_ACL_USER_OBJ) or a specified user (entry tag type 
GRID_ACL_USER). 

group A group ACL entry specifies the access granted to either the file group (entry tag 
type GRID_ACL_GROUP_OBJ) or a specified group (entry tag type 
GRID_ACL_GROUP). 

mask A mask ACL entry specifies the maximum access which can be granted by any 
ACL entry except the user entry for the file owner and the other entry (entry tag 
type GRID_ACL_MASK). 

other An other ACL entry specifies the access granted to any process that does not 
match any user or group ACL entries (entry tag type GRID_ACL_OTHER). 

The second field contains the user or group identifier of the user or group associated with the 
ACL entry for entries of entry tag type GRID_ACL_USER or GRID_ACL_GROUP, and is 
empty for all other entries. A user identifier can be a user name or a user ID number in 
decimal form. A group identifier can be a group name or a group ID number in decimal form. 
The third field contains the discretionary access permissions. The read, write and 
search/execute permissions are represented by the r, w, and x characters, in this order. Each 
of these characters is replaced by the - character to denote that a permission is absent in the 
ACL entry.  When converting from the text form to the internal representation, permissions 
that are absent need not be specified. 
White space is permitted at the beginning and end of each ACL entry, and immediately before 
and after a field separator (the colon character). 
Long Text Form 
The long text form contains one ACL entry per line. In addition, a number sign (#) may start a 
comment that extends until the end of the line. If an GRID_ACL_USER, 
GRID_ACL_GROUP_OBJ or GRID_ACL_GROUP ACL entry contains permissions that are 
not also contained in the GRID_ACL_MASK entry, the entry is followed by a number sign, 
the string "effective:", and the effective access permissions defined by that entry. This is an 
example of the long text form: 

user::rw- 

user:lisa:rw-         #effective:r— 

group::r— 

group:toolies:rw-     #effective:r— 

mask::r— 



 

 
 DRAFT 132 / 132
 

other::r— 

 
Short Text Form 
The short text form is a sequence of ACL entries separated by commas, and used for input. 
Comments are not supported. Entry tag type keywords may either appear in their full 
unabbreviated form, or in their single letter abbreviated form. The abbreviation for user is u, 
the abbreviation for group is g, the abbreviation for mask is m, and the abbreviation for other 
is o.  The permissions may contain at most one each of the following characters in any order: 
r, w, x -.  These are examples of the short text form: 
 

u::rw-,u:lisa:rw-,g::r--,g:toolies:rw-,m::r--,o::r-- 

g:toolies:rw,u:lisa:rw,u::wr,g::r,o::r,m::r 

 

Rationale 
IEEE 1003.1e draft 17 defines Access Control Lists that include entries tag type 
ACL_MASK, and defines a mapping between file permission bits that is not constant. The 
standard working group defined this relatively complex interface in order to ensure that 
applications that are compliant with IEEE 1003.1 ("POSIX.1") will still function as expected 
on systems with ACLs. The IEEE 1003.1e draft 17 contains the rationale for choosing this 
interface in section B.23. 
In addition to these, the mode parameter is dropped for the grid adaptation since we will 
enforce a default ACL at all times and in the client-service model the process ACL concept is 
dropped. 

Changes to the File Utilities 
On a system that supports ACLs, the file utilities ls, cp and mv change their behavior in the 
following way: 

• For files that have a default ACL or an access ACL that contains more than the three 
required ACL entries, the ls utility in the long form produced by ls -l displays a plus 
sign (+) after the permission string. 

• If the -p flag is specified, the cp utility also preserves ACLs. If this is not possible, a 
warning is produced. 

• The mv utility always preserves ACLs. If this is not possible, a warning is produced. 

Standards 
The IEEE 1003.1e draft 17 ("POSIX.1e") document describes several security extensions to 
the IEEE 1003.1 standard. While the work on 1003.1e has been abandoned, many UNIX style 
systems implement parts of POSIX.1e draft 17, or of earlier drafts. 
Linux Access Control Lists implement the full set of functions and utilities defined for Access 
Control Lists in POSIX.1e, and several extensions.  The implementation is fully compliant 
with POSIX.1e draft 17; extensions are marked as such. 
See also http://www.guug.de/~winni/posix.1e/download.html 
 
 


